Contenido principal del artículo

El secado por aspersión es una técnica de amplio uso en la industria de alimentos para la obtención de productos en polvo a partir de la formación de gotas pequeñas dentro de una cámara de secado a temperatura elevada. Esta técnica de secado se ha aplicado a la formación de microcápsulas que albergan compuestos funcionales con el objetivo de suplementar un alimento mediante la adición de uno o varios ingredientes esenciales que pueden proporcionar beneficios para la salud humana. En esta revisión, se recopiló información sobre el proceso de microencapsulación de secado por aspersión: el principio y las condiciones de operación, los materiales pared utilizados, su influencia sobre las propiedades fisicoquímicas y funcionales de las microcápsulas obtenidas, los problemas de calidad en las microcápsulas, los aspectos de liberación de los compuestos bioactivos y los estudios relacionados con la microencapsulación de vitaminas, minerales, sustancias oleosas, antioxidantes y microorganismos probióticos. En total, se consultaron 78 estudios publicados entre los años 2010 y 2020 en bases de datos de alto impacto en la comunidad científica. Se observó que algunas combinaciones de compuestos bioactivos, con propiedades fisicoquímicas y funcionales definidas, dan origen a nuevos alimentos funcionales que mejoran en alto grado la salud de quienes los consumen con frecuencia. Los adelantos en el área de la microencapsulación mediante secado por aspersión son numerosos y coinciden con las nuevas tendencias de desarrollo e innovación en el ámbito alimentario.

biocompuestos, encapsulación, estabilidad, secado, tecnología de alimentos
Cardona Tangarife, D. P., Patiño Arias, L. P., & Ormaza Zapata, A. M. (2021). Aspectos tecnológicos de la microencapsulación de compuestos bioactivos en alimentos mediante secado por aspersión. Ciencia & Tecnología Agropecuaria, 22(1), 1-21. https://doi.org/10.21930/rcta.vol22_num1_art:1899

Arslan, S., Erbas, M., Tontul, I., & Topuz, A. (2015). Microencapsulation of probiotic Saccharomyces cerevisiae var. boulardii with different wall materials by spray-drying. LWT - Food Science and Technology, 63(1), 685-690. https://doi.org/10.1016/j.lwt.2015.03.034

Badui, S. (2013). Química de los alimentos (5th ed.). Pearson Educación.

Banožić, M., Babić, J., & Jokić, S. (2020). Recent advances in extraction of bioactive compounds from tobacco industrial waste-a review. Industrial Crops and Products, 144, 112009. https://doi.org/10.1016/j.indcrop.2019.112009

Caliskan, G., & Dirim S. (2016). The effect of different drying processes and the amounts of maltodextrin addition on the powder properties of sumac extract powders. Powder Technology, 287, 308-314. https://doi.org/10.1016/j.powtec.2015.10.019

Campelo, P., Sanches, E., De Barros Fernandes, R., Botrel, D., & Borges, S. (2018). Stability of lime essential oil microparticles produced with protein-carbohydrate blends. Food Research International, 105, 936-944. https://doi.org/10.1016/j.foodres.2017.12.034

Cano-Chauca, M., Stringheta, P., Barbosa, S., Fonseca, K., & Silva, F. (2011). Influence of microstructure on the hygroscopic behaviour of mango powdered obtained by spray-drying. African Journal of Food Science, 5, 148-155.

Caparino, O., Tang, J., Nindo, C., Sablani, S., Powers, J., & Fellman, J. (2012). Effect of drying methods on the physical properties and microstructures of mango (Philippine “Carabao” var.) powder. Journal of Food Engineering, 111(1), 135-148. https://doi.org/10.1016/j.jfoodeng.2012.01.010

Carlan, I., Estevinho, B., & Rocha, F. (2017). Study of microencapsulation and controlled release of modified chitosan microparticles containing vitamin B12. Powder Technology, 318, 162-169. https://doi.org/10.1016/j.powtec.2017.05.041

Carneiro, H., Tonon, R., Grosso, C., & Hubinger, M. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray-drying using different combinations of wall materials. Journal of Food Engineering, 115(4), 443-451. https://doi.org/10.1016/j.jfoodeng.2012.03.033

Cassanego, E., Da Silva, T., Goulart, J., De Oliveira, G., & Sant’Anna, E. (2015). Lactobacillus paracasei isolated from grape sourdough: acid, bile, salt, and heat tolerance after spray-drying with skim milk and cheese whey. European Food Research and Technology, 240, 977-984. https://doi.org/10.1007/s00217-014-2402-x

Chong, P., Yusof, Y., Aziz, M., Nazli, N., Chin, N., & Muhammad, S. (2014). Effects of spray-drying conditions of microencapsulation of Amaranthus gangeticus extract on drying behaviour. Agriculture and Agricultural Science Procedia, 2, 33-42. https://doi.org/10.1016/j.aaspro.2014.11.006

Contreras-Rodríguez, O., Mata, F., Verdejo-Román, J., Ramírez-Bernabé, R., Moreno, D., Vilar-López, R., Soriano-Mas, C., & Verdejo-García, A. (2020). Neural-based valuation of functional foods among lean and obese individuals. Nutrition Research, 78, 27-35. https://doi.org/10.1016/j.nutres.2020.03.006

Cortés-Rojas, D., Fernandes, C., & Oliveira, W. (2015). Optimization of spray-drying conditions for production of Bidens pilosa L. dried extract. Chemical Engineering Research and Design, 93, 366-376. https://doi.org/10.1016/j.cherd.2014.06.010

Costa, S., Souza, B., Martin, A., Bagnara, F., Ragadalli, S., & Costa, A. (2015). Drying by spray-drying in the food industry: micro-encapsulation, process parameters and main carriers used. African Journal of Food Science, 9(9), 462-470. https://doi.org/10.5897/AJFS2015.1279

Da Silva, F., Rodrigues, C., De Alencar, S., Thomazini, M., De Carvalho, J., Pittia, P., & Favaro-Trindade, C. (2013). Assessment of production efficiency, physicochemical properties and storage stability of spray-dried propolis, a natural food additive, using gum Arabic and OSA starch-based carrier systems. Food and Bioproducts Processing, 91(1), 28-36. https://doi.org/10.1016/j.fbp.2012.08.006

Daza, L., Fujita, A., Fávaro-Trinda, C., Rodrigues-Ract, J., Granato, D., & Genovese, M. (2016). Effect of spray-drying conditions on the physical properties of Cagaita (Eugenia dysenterica DC.) fruit extracts. Food and Bioproducts Processing, 97, 20-29. https://doi.org/10.1016/j.fbp.2015.10.001

De Araújo-Uribe, N., Ruiz-Villadiego, O., Montoya-Campuzano, O., & Gutiérrez-Ramírez, L. (2018). Viability of probiotic bacteria Bacillus polymyxa, Bacillus megaterium and Lactobacillus delbruekii subsp. bulgaricus microencapsulated under the spray-drying technique. DYNA, 85(204), 272-276. https://doi.org/10.15446/dyna.v85n204.61644

De Souza, V., Thomazini, M., De Carvalho, J., Fávaro-Trindade, C. (2015). Effect of spray-drying on the physicochemical properties and color stability of the powdered pigment obtained from vinification byproducts of the Bordo grape (Vitis labrusca). Food and Bioproducts Processing, 93, 39-50. https://doi.org/10.1016/j.fbp.2013.11.001

Dhakal, S., & He, J. (2020). Microencapsulation of vitamins in food applications to prevent losses in processing and storage: a review. Food Research International, 137, 109326. https://doi.org/10.1016/j.foodres.2020.109326

Edris, A., Kalemba, D., Adamiec, J., & Piątkowski, M. (2016). Microencapsulation of Nigella sativa oleoresin by spray-drying for food and nutraceutical applications. Food Chemistry, 204, 326-333. https://doi.org/10.1016/j.foodchem.2016.02.143

Estevinho, B., Carlan, I., Blaga, A., & Rocha, F. (2016). Soluble vitamins (vitamin B12 and vitamin C) microencapsulated with different biopolymers by a spray-drying process. Powder Technology, 289, 71-78. https://doi.org/10.1016/j.powtec.2015.11.019

Fang, Z., & Bhandari, B. (2011). Effect of spray-drying and storage on the stability of bayberry polyphenols. Food Chemistry, 129(3), 1139-1147. https://doi.org/10.1016/j.foodchem.2011.05.093

Favaro-Trindade, C., Patel, B., Silva, M., Comunian, T., Federici, E., Jones, O., & Campanella, O. (2020). Microencapsulation as a tool to producing an extruded functional food. LWT, 128, 109433. https://doi.org/10.1016/j.lwt.2020.109433

Fernandes, R., Borges, S., Silva, E., Da Silva, Y., De Souza, H., Do Carmo, E., De Oliveira, C., Yoshida, M., & Botrel, D. (2016). Study of ultrasound-assisted emulsions on microencapsulation of ginger essential oil by spray-drying. Industrial Crops and Products, 94, 413-423. https://doi.org/10.1016/j.indcrop.2016.09.010

Gil, M., Alzate, L., Sánchez-Camargo, A., & Millán, L. (2011). Secado por aspersión: una alternativa para la conservación de los compuestos bioactivos y aromáticos del extracto de ajo (Allium sativum L.). Revista Lasallista de Investigación, 8(2), 40-52. http://repository.lasallista.edu.co:8080/ojs/index.php/rldi/article/view/25/14

Gómez-Aldapa, C., Castro-Rosas, J., Rangel-Vargas, E., Navarro-Cortez, R., Cabrera-Canales, Z., Díaz-Batalla, L., Martínez-Bustos, F., Guzmán-Ortiz, F., & Falfan-Cortes, R. (2019). A modified Achira (Canna indica L.) starch as a wall material for the encapsulation of Hibiscus sabdariffa extract using spray-drying. Food Research International, 119, 547-553. https://doi.org/10.1016/j.foodres.2018.10.031

Goula, A., & Adamopoulos, K. (2010). A new technique for spray-drying orange juice concentrate. Innovative Food Science & Emerging Technologies, 11(2), 342-351. https://doi.org/10.1016/j.ifset.2009.12.001

Haider, C., Niederreiter, G., Palzer, S., Hounslow, M., & Salman, A. (2018). Unwanted agglomeration of industrial amorphous food powder from a particle perspective. Chemical Engineering Research and Design, 132, 1160-1169. https://doi.org/10.1016/j.cherd.2018.02.023

Hashib, S., Rahman, N., Suzihaque, M., Ibrahim, U., & Hanif, N. (2015). Effect of slurry concentration and inlet temperature towards glass temperature of spray dried pineapple powder. Procedia - Social and Behavioral Sciences, 195, 2660-2667. https://doi.org/10.1016/j.sbspro.2015.06.472

Hategekimana, J., Masamba, K., Ma, J., & Zhong, F. (2015). Encapsulation of vitamin E: effect of physicochemical properties of wall material on retention and stability. Carbohydrate Polymers, 124, 172-179. https://doi.org/10.1016/j.carbpol.2015.01.060

Hernández, M., Cuvelier, M.-E., & Turchiuli, C. (2015). Design of liquid emulsions to structure spray dried particles. Journal of Food Engineering, 167, Part B, 99-105. https://doi.org/10.1016/j.jfoodeng.2015.07.036

Huang, S., Méjean, S., Rabah, H., Dolivet, A., Le Loir, Y., Chen, X., Jan, G., Jeantet, R., & Schuck, P. (2017). Double use of concentrated sweet whey for growth and spray-drying of probiotics: towards maximal viability in pilot scale spray dryer. Journal of Food Engineering, 196, 11-17. https://doi.org/10.1016/j.jfoodeng.2016.10.017

Islam, M., Kitamura, Y., Yamano, Y., & Kitamura, M. (2016). Effect of vacuum spray-drying on the physicochemical properties, water sorption and glass transition phenomenon of orange juice powder. Journal of Food Engineering, 169, 131-140. https://doi.org/10.1016/j.jfoodeng.2015.08.024

Lisboa, H., Duarte, M., & Cavalcanti-Mata, M. (2018). Modeling of food drying processes in industrial spray dryers. Food and Bioproducts Processing, 107, 49-60. https://doi.org/10.1016/j.fbp.2017.09.006

Liu, W., Chen, X., Cheng, Z., & Selomulya, C. (2016). On enhancing the solubility of curcumin by microencapsulation in whey protein isolate via spray-drying. Journal of Food Engineering, 169, 189-195. https://doi.org/10.1016/j.jfoodeng.2015.08.034

Lopera, S. C., & Gallardo, C. C. (2010). Estudio de la fotodegradación de ácido fólico encapsulado en microesferas de goma arábiga y maltodextrina. Revista Cubana de Farmacia, 44(4), 443-455.

Lucas, J., Ralaivao, M., Estevinho, B., & Rocha, F. (2020). A new approach for the microencapsulation of curcumin by a spray-drying method, in order to value food products. Powder Technology, 362, 428-435. https://doi.org/10.1016/j.powtec.2019.11.095

Luna-Guevara, J., Ochoa-Velasco, C., Hernández-Carranza, P., & Guerrero-Beltrán, J. (2017). Microencapsulation of walnut, peanut and pecan oils by spray-drying. Food Structure, 12, 26-32. https://doi.org/10.1016/j.foostr.2017.04.001

Martín, M., Lara-Villoslada, F., Ruiz, M., & Morales, M. (2015). Microencapsulation of bacteria: a review of different technologies and their impact on the probiotic effects. Innovative Food Science & Emerging Technologies, 27, 15-25. https://doi.org/10.1016/j.ifset.2014.09.010

Martínez, M., Curti, M., Roccia, P., Llabot, J., Penci, M., Bodoira, R., & Ribotta, P. (2015). Oxidative stability of walnut (Juglans regia L.) and chia (Salvia hispanica L.) oils microencapsulated by spray-drying. Powder Technology, 270, Part A, 271-277. https://doi.org/10.1016/j.powtec.2014.10.031

Medina-Torres, L., García-Cruz, E., Calderas, F., González, R., Sánchez-Olivares, G., Gallegos-Infante, J., Rocha-Guzmán, N., & Rodríguez-Ramírez, J. (2013). Microencapsulation by spray-drying of gallic acid with nopal mucilage (Opuntia ficus indica). LWT - Food Science and Technology, 50(2), 642-650. https://doi.org/10.1016/j.lwt.2012.07.038

Medina-Torres, L., Núñez-Ramírez, D., Calderas, F., González-Laredo, R., Minjares-Fuentes, R., Valadez-García, M., Bernad-Bernad, M., & Manero, O. (2019). Microencapsulation of gallic acid by spray-drying with aloe vera mucilage (Aloe barbadensis Miller) as wall material. Industrial Crops and Products, 138, 111461. https://doi.org/10.1016/j.indcrop.2019.06.024

Mohammadian, M., Waly, M., Moghadam, M., Emam-Djomeh, Z., Salami, M., & Moosavi-Movahedi, A. (2020). Nanostructured food proteins as efficient systems for the encapsulation of bioactive compounds. Food Science and Human Wellness. https://doi.org/10.1016/j.fshw.2020.04.009

Morales-Guzmán, J, Medina-Torres, M. G., Andrade-Esquivel, E., Guzmán-Maldonado S. H., & Hernández-López, D. (2010). Evaluación de los efectos del secado por aspersión sobre los compuestos fitoquímicos-funcionales y características fisicoquímicas en encapsulados de zarzamora (Rubus spp). XII Congreso Nacional de Ciencia y Tecnología de los Alimentos (Universidad de Guanajuato, Universidad Autónoma de Nuevo León), Guanajuato, México. https://bit.ly/3gEBCQA

Morales-Medina, R., Tamm, F., Guadix, A., Guadix, E., & Drusch, S. (2016). Functional and antioxidant properties of hydrolysates of sardine (S. pilchardus) and horse mackerel (T. mediterraneus) for the microencapsulation of fish oil by spray-drying. Food Chemistry, 194, 1208-1216. https://doi.org/10.1016/j.foodchem.2015.08.122

Mujumdar, A. (Ed.). (2014). Handbook of industrial drying (4th ed.). CRC Press.

Murugesan, R., & Orsat, V. (2011). Spray-drying for the production of nutraceutical ingredients. A review. Food and Bioprocess Technology, 5(1), 3-14. https://doi.org/10.1007/s11947-011-0638-z

Oberoi, D., & Sogi, D. (2015). Effect of drying methods and maltodextrin concentration on pigment content of watermelon juice powder. Journal of Food Engineering, 165, 172-178. https://doi.org/10.1016/j.jfoodeng.2015.06.024

Ozkan, G., Franco, P., De Marco, I., Xiao, J., & Capanoglu, E. (2019). A review of microencapsulation methods for food antioxidants: principles, advantages, drawbacks and applications. Food Chemistry, 272, 494-506. https://doi.org/10.1016/j.foodchem.2018.07.205

Parra, R. (2010). Revisión: microencapsulación de alimentos. Revista Facultad Nacional de Agronomía Medellín, 63(2), 5669-5684. https://revistas.unal.edu.co/index.php/refame/article/view/25055/37055

Paudel, A., Worku, Z., Meeus, J., Guns, S., & Van den Mooter, G. (2013). Manufacturing of solid dispersions of poorly water soluble drugs by spray-drying: formulation and process considerations. International Journal of Pharmaceutics, 453(1), 253-284. https://doi.org/10.1016/j.ijpharm.2012.07.015

Pellicer, J., Fortea, M., Trabal, J., Rodríguez-López, M., Carazo-Díaz, C., Gabaldón, J., & Núñez-Delicado, E. (2018). Optimization of the microencapsulation of synthetic strawberry flavour with different blends of encapsulating agents using spray-drying. Powder Technology, 338, 591-598. https://doi.org/10.1016/j.powtec.2018.07.080

Poozesh, S., & Bilgili, E. (2019). Scale-up of pharmaceutical spray-drying using scale-up rules: a review. International Journal of Pharmaceutics, 562, 271-292. https://doi.org/10.1016/j.ijpharm.2019.03.047

Rajabi, H., Ghorbani, M., Jafari, S., Mahoonak, A., & Rajabzadeh, G. (2015). Retention of saffron bioactive components by spray-drying encapsulation using maltodextrin, gum Arabic and gelatin as wall materials. Food Hydrocolloids, 51, 327-337. https://doi.org/10.1016/j.foodhyd.2015.05.033

Ramakrishnan, Y., Adzahan, N., Yusof, Y., & Muhammad, K. (2018). Effect of wall materials on the spray-drying efficiency, powder properties and stability of bioactive compounds in tamarillo juice microencapsulation. Powder Technology, 328, 406-414. https://doi.org/10.1016/j.powtec.2017.12.018

Rezende, Y., Nogueira, J., & Narain, N. (2018). Microencapsulation of extracts of bioactive compounds obtained from acerola (Malpighia emarginata DC) pulp and residue by spray and freeze drying: chemical, morphological and chemometric characterization. Food Chemistry, 254, 281-291. https://doi.org/10.1016/j.foodchem.2018.02.026

Ribeiro, A., Shahgol, M., Estevinho, B., & Rocha, F. (2020). Microencapsulation of vitamin A by spray-drying, using binary and ternary blends of gum Arabic, starch and maltodextrin. Food Hydrocolloids, 108, 106029. https://doi.org/10.1016/j.foodhyd.2020.106029

Rodríguez-Huezo, M., Estrada-Fernández, A., García-Almendárez, B., Ludeña-Urquizo, F., Campos-Montiel, R., & Pimentel-González, D. (2014). Viability of Lactobacillus plantarum entrapped in double emulsion during Oaxaca cheese manufacture, melting and simulated intestinal conditions. LWT - Food Science and Technology, 59(2), Part 1, 768-773. https://doi.org/10.1016/j.lwt.2014.07.004

Rodríguez-Restrepo, Y., Giraldo, G., & Rodríguez-Barona, S. (2017). Solubility as a fundamental variable in the characterization of wall material by spray-drying of food components: application to microencapsulation of Bifidobacterium animalis subsp. lactis. Journal of Food Process Engineering, 40(6), e12557. https://doi.org/10.1111/jfpe.12557

Rouf, S., Jan, T., & Sharma, P. (2018). Non-dairy probiotics – An emerging trend in health care products. International Journal of Current Microbiology and Applied Sciences, 7(10), 131-145. https://doi.org/10.20546/ijcmas.2018.710.015

Saifullah, Md., Islam, M., Ferdowsi, R., Rahman M., & Vuong, V. (2019). Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: a critical review. Trends in Food Science & Technology, 86, 230-251. https://doi.org/10.1016/j.tifs.2019.02.030

Salminen, H., Ankenbrand, J., Zeeb, B., Badolato G., Schäfer, C., Kohlus, R., & Weiss, J. (2019). Influence of spray-drying on the stability of food-grade solid lipid nanoparticles. Food Research International, 119, 741-750. https://doi.org/10.1016/j.foodres.2018.10.056

Santos, S., Rodrigues, L., Costa, S., & Madrona, G. (2019). Antioxidant compounds from blackberry (Rubus fruticosus) pomace: microencapsulation by spray-dryer and pH stability evaluation. Food Packaging and Shelf Life, 20, 100177. https://doi.org/10.1016/j.fpsl.2017.12.001

Shishir, M., Taip, F., Aziz, N., & Talib, R. (2014). Physical properties of spray-dried pink guava (Psidium guajava) powder. Agriculture and Agricultural Science Procedia, 2, 74-81. https://doi.org/10.1016/j.aaspro.2014.11.011

Solanki, H., Pawar, D., Shah, D., Prajapati, V., Jani, G., Mulla, A., & Thakar, P. (2013). Development of microencapsulation delivery system for long-term preservation of probiotics as biotherapeutics agent. BioMed Research International, 2013, 620719. https://doi.org/10.1155/2013/620719

Talón, E., Lampi, A., Vargas, M., Chiralt, A., Jouppila, K., & González-Martínez, C. (2019). Encapsulation of eugenol by spray-drying using whey protein isolate or lecithin: release kinetics, antioxidant and antimicrobial properties. Food Chemistry, 295, 588-598. https://doi.org/10.1016/j.foodchem.2019.05.115

Tan, S., Kha, T., Parks, S., Stathopoulos, C., & Roach, P. (2015). Effects of the spray-drying temperatures on the physiochemical properties of an encapsulated bitter melon aqueous extract powder. Powder Technology, 281, 65-75. https://doi.org/10.1016/j.powtec.2015.04.074

Tan, S., Zhong, C., & Langrish, T. (2020). Encapsulation of caffeine in spray-dried micro-eggs for controlled release: The effect of spray-drying (cooking) temperature. Food Hydrocolloids, 108, 105979. https://doi.org/10.1016/j.foodhyd.2020.105979

Tavares, L., & Zapata, C. (2019). Encapsulation of garlic extract using complex coacervation with whey protein isolate and chitosan as wall materials followed by spray-drying. Food Hydrocolloids, 89, 360-369. https://doi.org/10.1016/j.foodhyd.2018.10.052

Tontul, I., & Topuz, A. (2017). Review. Spray-drying of fruit and vegetable juices: effect of drying conditions on the product yield and physical properties. Trends in Food Science & Technology, 63, 91-102. https://doi.org/10.1016/j.tifs.2017.03.009

Tripathi, M., & Giri, S. (2014). Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods, 9, 225-241. https://doi.org/10.1016/j.jff.2014.04.030

Vishnu, K., Chatterjee, N., Ajeeshkumar, K., Lekshmi, R., Tejpal, C., Mathew, S., & Ravishankar, C. (2017). Microencapsulation of sardine oil: application of vanillic acid grafted chitosan as a bio-functional wall material. Carbohydrate Polymers, 174, 540-548. https://doi.org/10.1016/j.carbpol.2017.06.076

Wang, T., Soyama, S., & Luo, Y. (2016). Development of a novel functional drink from all natural ingredients using nanotechnology. LWT, 73, 458-466. https://doi.org/10.1016/j.lwt.2016.06.050

Wei, Y., Woo, M., Selomulya, C., Wu, W., Xiao, J., & Chen, J. (2019). Numerical simulation of mono-disperse droplet spray dryer under the influence of nozzle motion. Powder Technology, 355, 93-105. https://doi.org/10.1016/j.powtec.2019.07.017

Ye, Q., Georges, N., & Selomulya, C. (2018). Microencapsulation of active ingredients in functional foods: from research stage to commercial food products. Trends in Food Science & Technology, 78, 167-179. https://doi.org/10.1016/j.tifs.2018.05.025

Yingngam, B., Kacha, W., Rungseevijitprapa, W., Sudta, P., Prasitpuriprecha, C., & Brantner, A. (2019). Response surface optimization of spray-dried citronella oil microcapsules with reduced volatility and irritation for cosmetic textile uses. Powder Technology, 355, 372-385. https://doi.org/10.1016/j.powtec.2019.07.065

Yonekura, L., Sun, H., Soukoulis, C., & Fisk, I. (2014). Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fiber by spray-drying: technological characterization, storage stability and survival after in vitro digestion. Journal of Functional Foods, 6, 205-214. https://doi.org/10.1016/j.jff.2013.10.008

Yousefi, S., Emam-Djomeh, Z., & Mousavi, S. (2011). Effect of carrier type and spray-drying on the physicochemical properties of powdered and reconstituted pomegranate juice (Punica granatum L.). Journal of Food Science and Technology, 48(6), 677-684. https://doi.org/10.1007/s13197-010-0195-x

Zhang, C., Khoo, S., Chen, X., & Quek, S. (2020). Microencapsulation of fermented noni juice via micro-fluidic-jet spray-drying: evaluation of powder properties and functionalities. Powder Technology, 361, 995-1005. https://doi.org/10.1016/j.powtec.2019.10.098

Zhang, J., Wen, C., Zhang, H., Duan, Y., & Ma, H. (2020). Recent advances in the extraction of bioactive compounds with subcritical water: a review. Trends in Food Science & Technology, 95, 183-195. https://doi.org/10.1016/j.tifs.2019.11.018

Descargas

La descarga de datos todavía no está disponible.

Metricas

Cargando métricas ...

Metricas alternativas PLUMX

Detalles del artículo