Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio

Revisión del impacto de concentraciones elevadas de CO2 sobre frutales en la era del cambio climático

Universidad Nacional de Colombia
Universidad Nacional de Colombia
Universidad Nacional de Colombia
dióxido de carbono enriquecimiento de dióxido de carbono fotosíntesis fuerza vertedero nitrógeno uso eficiente del agua fisiología de frutales relaciones fuente sumidero

Resumen

Las actividades antropogénicas han contribuido a que la concentración de CO2 atmosférico aumente constantemente con una predicción de 600 a 700 ppm para fines de este siglo, siendo una de las mayores causas del calentamiento global. Los huertos frutales y viñedos son importantes sistemas de producción sostenible que pueden minimizar las emisiones y secuestrar carbono de la atmósfera. Para esta revisión de literatura, se evaluó mediante la información obtenida de diferentes bases de datos. Generalmente, el CO2 elevado (e-CO2) genera efectos positivos sobre los frutales en procesos como el aumento de la fotosíntesis, el uso eficiente de agua, el crecimiento y la biomasa. Por lo anterior, en muchos casos, el rendimiento y la calidad de los frutos también incrementaron. Se estima que, con un e-CO2 de 600-750 ppm, la mayoría de las plantas C3 crecerán un 30 % más rápido. Con 1000 ppm las condiciones serán óptimas para la fotosíntesis de varias especies vegetales. Los árboles frutales que también crecen en Colombia como los cítricos, la vid, la fresa, la papaya y la pitaya, se beneficiarían de los efectos positivos mencionados anteriormente, en tanto que el e-CO2 aliviaría los efectos del estrés por sequía y anegamiento. Sin embargo, el mayor crecimiento de los frutales por el e-CO2 exige un mayor suministro de nutrientes y agua, por lo cual es muy importante la selección de genotipos que se benefician del e-CO2 y que presenten un alto uso eficiente de nitrógeno y agua. Así mismo, es deseable que dichas especies posean una alta fuerza vertedero para evitar la acumulación de carbohidratos en el cloroplasto. Esta revisión permite concluir que existe un “efecto fertilizante del CO2” sobre las especies frutales que aumenta con el avance del cambio climático. Sin embargo, existe poca investigación en comparación con muchos otros cultivos agrícolas. Por ello, a futuro se requieren estudios que midan los efectos directos del e-CO2 atmosférico y sus interacciones con variables ambientales, como la lluvia, la temperatura, la humedad del suelo y la disponibilidad de nutrientes.

Fischer, G., L. M. Melgarejo, y H. E. . Balaguera-López. «Revisión Del Impacto De Concentraciones Elevadas De CO2 Sobre Frutales En La Era Del Cambio climático». Ciencia &Amp; Tecnología Agropecuaria, vol. 23, n.º 2, marzo de 2022, doi:10.21930/rcta.vol23_num2_art:2475.
  1. Ainsworth, E. A., & Lemonnier, P. (2018). Phloem function: a key to understanding and manipulating plant responses to rising atmospheric [CO2]? Current Opinion in Plant Biology, 43, 50-56. https://doi.org/10.1016/j.pbi.2017.12.003
  2. Ainsworth, E. A., & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell and Environment, 30, 258-270. https://doi.org/10.1111/j.1365-3040.2007.01641.x
  3. Al‐Mamoori, A., Krishnamurthy, A., Rownaghi, A. A., & Rezaei, F. (2017). Carbon capture and utilization update. Energy Technology, 5(6), 834-849. https://doi.org/10.1002/ente.201600747
  4. Allen, L. H., & Vu, J. C. V. (2009). Carbon dioxide and high temperature effects on growth of young orange trees in a humid, subtropical environment. Agriculture and Forest Meteorology, 149, 820-830. https://doi.org/10.1016/j.agrformet.2008.11.002
  5. Altieri, M. A., & Nicholls, C. I. (2017). The adaptation and mitigation potential of traditional agriculture in a changing climate. Climate Change, 140(1), 33-45. https://doi.org/10.1007/s10584-013-0909-y
  6. Anderson, C. M., DeFries, R. S., Litterman, R., Matson, P. A., Nepstad, D. C., Pacala, S., Schlesinger, W. H., Shaw, M. R., Smith, P., Weber, C., & Field, C. B. (2019). Field natural climate solutions are not enough. Science, 363(6430), 933-934. http://dx.doi.org/10.1126/science.aaw2741
  7. Balasooriya, H. N., Dassanayake, K. B., & Ajlouni, S. (2019). The impact of elevated CO2 and high temperature on the nutritional quality of fruits - A short review. American Journal of Agricultural Research, 4(26), 1-9. https://escipub.com/ajar-2018-12-1608/
  8. Bhargava, S., & Mitra, S. (2021). Elevated atmospheric CO2 and the future of crop plants. Plant Breeding 140, 1-11. https://doi.org/10.1111/pbr.12871
  9. Becker, C., & Kläring H. P. (2016). CO2 enrichment can produce high red leaf lettuce yield while increasing most flavonoid glycoside and some caffeic acid derivative concentrations. Food Chemistry, 199, 736-745. https://doi.org/10.1016/j.foodchem.2015.12.059
  10. Bindi, M., Fibbi, L., & Miglietta, F. (2001). Free air CO2 Enrichment (FACE) of grapevine (Vitis vinifera L.): II. Growth and quality of grape and wine in response to elevated CO2 concentrations. European Journal of Agronomy, 14(2), 145-155. https://doi.org/10.1016/S1161-0301(00)00093-9
  11. Bisbis, M. B., Gruda, N., & Blanke, M. (2018). Potential impacts of climate change on vegetable production and product quality - a review. Journal of Cleaner Production, 170, 1602-1620. https://doi.org/10.1016/j.jclepro.2017.09.224
  12. Bradley, K. L., & Pregitzer, K. S. (2007). Ecosystem assembly and terrestrial carbon balance under elevated CO2. Trends in Ecology and Evolution, 22(10), 538-547. https://doi.org/10.1016/j.tree.2007.08.005
  13. Brito, F., Thaline, T., Pimenta, M., Henschel, J., Martins, S., Zsögön, A., & Ribeiro, D. (2020). Elevated CO2 improves assimilation rate and growth of tomato plants under progressively higher soil salinity by decreasing abscisic acid and ethylene levels. Environmental and Experimental Botany, 176, 104050. https://doi.org/10.1016/j.envexpbot.2020.104050
  14. Brunori, E., Farina, R., & Biasi R. (2016). Sustainable viticulture: The carbon-sink function of the vineyard agro-ecosystem. Agriculture, Ecosystems and Environment, 223, 10-21. https://doi.org/10.1016/j.agee.2016.02.012
  15. Casierra-Posada, F. & Fischer, G. (2012). Poda de árboles frutales. In G. Fischer (Ed.), Manual para el cultivo de frutales en el trópico (pp. 169-185). Produmedios.
  16. Ceulemans, R., Janssens, I. A., & Jach, M. E. (1999). Effects of CO2 enrichment on trees and forests: Lessons to be learned in view of future ecosystem studies. Annals of Botany, 84(5), 577-590. https://doi.org/10.1006/anbo.1999.0945
  17. Cortés, A. J., Restrepo-Montoya, M., & Bedoya-Canas, L. E. (2020). Modern strategies to assess and breed forest tree adaptation to changing climate. Frontiers in Plant Science, 11, 583323. https://doi.org/10.3389/fpls.2020.583323
  18. Cruz, J. L., Alves, A. A. C., LeCain, D. R., Ellis, D. D., & Morgan, J. A. (2016). Interactive effects between nitrogen fertilization and elevated CO2 on growth and gas exchange of papaya seedlings. Scientia Horticulturae, 202, 32-40. https://doi.org/10.1016/j.scienta.2016.02.010
  19. DaMatta, F. M., Grandis, A., Arenque, B. C., & Buckeridge, M. S. (2010). Impacts of climate changes on crop physiology and food quality. Food Research International, 43, 1814-1823. https://doi.org/10.1016/j.foodres.2009.11.001
  20. De Zwart, H. F. (2012). Lessons learned from experiments with semi-closed greenhouses. Acta Horticulturae, 952, 583-588. https://doi.org/10.17660/ActaHortic.2012.952.74
  21. Dingkuhn, M., Luquet, D., Fabre, D., Muller, B., Yin, X., & Paul, M. J. (2020). The case for improving crop carbon sink strength or plasticity for a CO2-rich future. Current Opinion in Plant Biology, 56, 259-272. https://doi.org/10.1016/j.pbi.2020.05.012
  22. Dong, J., Gruda, N., Li, X., & Duan, Z. (2018). Effects of elevated CO2 on nutritional quality of vegetables: A review. Frontiers of Plant Science, 9, 924. https://doi.org/10.3389/fpls.2018.00924
  23. Dong, J., Gruda, N., Li, X., Tang, Y., & Duan, Z. (2020). Impacts of elevated CO2 on nitrogen uptake of cucumber plants and nitrogen cycling in a greenhouse soil. Applied Soil Ecology, 145, 103342. https://doi.org/10.1016/j.apsoil.2019.08.004
  24. Drake, B. G., & González-Meler, M. A. (1997). More efficient plants: a consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology, 48, 609-639. https://doi.org/10.1146/annurev.arplant.48.1.609
  25. Ebi, K. L., Anderson, C. L., Hess, J. J., Kim, S.-H., Loladze, I., Neumann, R. B., Singh, D., Ziska, L., & Wood, R. (2021). Nutritional quality of crops in a high CO2 world: an agenda for research and technology development. Environmental Research Letters, 16, 064045. https://doi.org/10.1088/1748-9326/abfcfa
  26. Fischer, G., & Melgarejo, L. M. (2020). The ecophysiology of cape gooseberry (Physalis peruviana L.) - an Andean fruit crop. A review. Revista Colombiana de Ciencias Horticolas, 14(1), 76-89. https://doi.org/10.17584/rcch.2020v14i1.10893
  27. Fischer, G., & Orduz-Rodríguez, J. (2012). Ecofisiología en frutales. In G. Fischer (Ed.), Manual para el cultivo de frutales en el trópico (pp. 54-72). Produmedios.
  28. Fischer, G., Ramírez, F., & Casierra-Posada, F. (2016). Ecophysiological aspects of fruit crops in the era of climate change. A review. Agronomía Colombiana, 34(2), 190-199. https://doi.org/10.15446/agron.colomb.v34n2.56799
  29. Gruda, N., Bisbis, M., & Tanny, J. (2019). Influence of climate change on protected cultivation: Impacts and sustainable adaptation strategies - A review. Journal of Cleaner Production, 225, 481e495. https://doi.org/10.1016/j.jclepro.2019.03.210
  30. Haokip, S. W., Shankar, K., & Lalrinngheta, J. (2020). Climate change and its impact on fruit crops. Journal of Pharmacognosy and Phytochemistry, 9(1), 435-438. https://www.phytojournal.com/archives?year=2020&vol=9&issue=1&ArticleId=10464
  31. Henson, R. (2011). The rough guide to climate change (3rd ed.). Penguin Books.
  32. Hiratsuka, S., Suzuki, M., Nishimura H., & Nada, K. (2015). Fruit photosynthesis in Satsuma mandarin. Plant Science, 241, 65-69. https://doi.org/10.1016/j.plantsci.2015.09.026
  33. Houston, L., Capalbo, S., Seavert, C., Dalton, M., Bryla, D., & Sagili, R. (2018). Specialty fruit production in the Pacific Northwest: adaptation strategies for a changing climate. Climate Change, 146, 159-171. https://doi.org/10.1007/s10584-017-1951-y
  34. IPCC. (2013). Climate change 2013: The physical science basis. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
  35. IPCC. (2019). Summary for Policymakers. In Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Intergovernmental Panel on Climate Change.
  36. Jackson, L. E., Wheeler, S. M., Hollander, A. D., O’Geen, A. T., Orlove, B. S., Six, J., Sumner, D. A., Santos-Martin, F., Kramer, J. B., Horwath, W. R., Howit, R. E. T, & Tomich, T. P. (2011). Case study on potential agricultural responses to climate change in a California landscape. Climate Change, 109(Suppl 1), S407-S427. https://doi.org/10.1007/s10584-011-0306-3
  37. Jones, G. V., White, M. A., Cooper, O. R., & Storchmann, K. (2005). Climate change and global wine quality. Climate Change, 73, 319-343. https://doi.org/10.1007/s10584-005-4704-2
  38. Keutgen, N., Chen, A. I., & Lenz, F. (1997). Responses of strawberry leaf photosynthesis, chlorophyll fluorescence and macronutrient contents to elevated CO2. Journal of Plant Physiology, 150, 395-400. https://doi.org/10.1016/S0176-1617(97)80088-0
  39. Kimball, B. A., Idso, S. B., Johnson, S., & Rillig, M. C. (2007). Seventeen years of carbon dioxide enrichment of sour orange trees: final results. Global Change Biology, 13, 2171-2183. https://doi.org/10.1111/j.1365-2486.2007.01430.x
  40. Kizildeniz, T., Pascual, I., Irigoyen, J. J., & Morales, F. (2018). Using fruit-bearing cuttings of grapevine and temperature gradient greenhouses to evaluate effects of climate change (elevated CO2 and temperature, and water deficit) on the cv. red and white Tempranillo. Yield and must quality in three consecutive growing seasons (2013-2015). Agricultural Water Management, 202, 299-310. https://doi.org/ 10.1016/j.agwat.2017.12.001
  41. Kläring, H. P., Hauschild, C., Heißner, A., & Bar-Yosef, B. (2007). Model-based control of CO2 concentration in greenhouses at ambient levels increases cucumber yield. Agricultural and Forest Meteorology, 143, 208-216. https://doi.org/10.1016/j.agrformet.2006.12.002
  42. Kochhar, S. L., & Gujral, S. K. (2020). Plant physiology: Theory and applications (2nd ed.). Cambridge University Press. https://doi.org/10.1017/9781108486392
  43. Kumar, M., Sundaram, S., Gnansounou, E., Larroche, C., & Thakur, I. S. (2017). Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: a review. Bioresource Technology, 247, 1059-1068. https://doi.org/ 10.1016/j.biortech.2017.09.050
  44. Larcher, W. (2003). Physiological plant ecology. Springer-Verlag. https://doi.org/ 10.1007/978-3-662-05214-3
  45. Leakey, A. D. B. (2009). Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel. Proceedings of the Royal Society B, 276, 2333-2343. https://doi.org/10.1098/rspb.2008.1517
  46. Leakey, A. D. B., Bishop, K. A., &. Ainsworth, E. A. (2012). A multi-biome gap in understanding of crop and ecosystem responses to elevated CO2. Current Opinion in Plant Biology, 15, 228-236. https://doi.org/10.1016/j.pbi.2012.01.009
  47. Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., Pickers, P. A., Korsbakken, J. I., Peters, G. P., Canadell, J. G., Arneth, A., Arora, V. K., Barbero, L., Bastos, A., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Doney, S. C., …, & Zheng, B. (2018). Global Carbon Budget 2018. Earth System Science Data, 10, 2141-2194. https://doi.org/10.5194/essd-10-2141-2018
  48. Leung, D. Y., Caramanna G., & Maroto-Valer, M. M. (2014). An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Review, 39, 426-443. https://doi.org/10.1016/j.rser.2014.07.093
  49. Li, X., Zhao, J., Shang, M., Song, H., Zhang, J., Xu, X., Zheng, S., Hou, L., Li, M., & Xing, G. (2020). Physiological and molecular basis of promoting leaf growth in strawberry (Fragaria × ananassa Duch.) by CO2 enrichment. Biotechnology & Biotechnological Equipment, 34(1), 905-917. https://doi.org/10.1080/13102818.2020.1811766
  50. López-Bellido, L. (2015). Agricultura, cambio climático y secuestro de carbono. Universidad de Córdoba.
  51. Luedeling, E., Girvetz, E. H., Semenov, M. A., & Brown, P. H. (2011). Climate change affects winter chill for temperate fruit and nut trees. PLoS ONE, 6(5), e20155. https://doi.org/10.1371/journal.pone.0020155
  52. Marín, M. del P., Andrade, H. J., & Sandoval, A. P. (2016). Fijación de carbono atmosférico en la biomasa total de sistemas de producción de cacao en el departamento del Tolima, Colombia. Revista U.D.C.A Actualidad & Divulgación Científica, 19(2), 351-360. https://doi.org/10.31910/rudca.v19.n2.2016.89
  53. Martínez-Lüscher, J., Morales, F., Sánchez-Díaz, M., Delrot, S., Aguirreolea, J., Gomès, E., & Pascual, I. (2015). Climate change conditions (elevated CO2 and temperature) and UV-B radiation affect grapevine (Vitis vinifera cv. Tempranillo) leaf carbon assimilation, altering fruit ripening rates. Plant Science, 236, 168-176. https://doi.org/10.1016/j.plantsci.2015.04.001
  54. Menezes-Silva, P. E., Loram-Lourenço, L., Alves, R. D. F. B., Sousa, L. F., Almeida, S. E. D. S., & Farnese, F. S. (2019). Different ways to die in a changing world: Consequences of climate change for tree species performance and survival through an ecophysiological perspective. Ecology and Evolution, 2019, 1-21. https://doi.org/10.1002/ece3.5663
  55. Mishra, A. K., Agrawal, S. B., & Agrawal, M. (2019). Rising atmospheric carbon dioxide and plant responses: current and future consequences. In Climate change and agricultural ecosystems (pp. 265-306). Elsevier. https://doi.org/10.1016/B978-0-12-816483-9.00011-6
  56. Moretti, C. L., Mattos L. M., Calbo A. G., & Sargent S. A. (2010). Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: A review. Food Research International, 43, 1824-1832. https://doi.org/10.1016/j.foodres.2009.10.013
  57. Morgan, J. A., LeCain, D. R., Pendall, E., Blumenthal, D. M., Kimball, B. A., Carrillo, Y., Williams, D. G., Heisler-White, J., Dijkstra, F. A., & West, M. (2011). C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature, 476, 202-206. https://doi.org/10.1038/nature10274
  58. Moriondo, M., Jones, G. V., Bois, B., Dibari, C., Ferrise, R., Trombi, G., & Bindi, M. (2013). Projected shifts of wine regions in response to climate change. Climate Change, 19(3-4), 825-839. https://doi.org/10.1007/s10584-013-0739-y
  59. Nobel, P. S. (1991). Achievable productivities of certain CAM plants: basis for high values compared with C3 and C4 plants. New Phytology, 119(2), 183-205. https://doi.org/10.1111/j.1469-8137.1991.tb01022.x
  60. Nobel, P. S. (1999). Physicochemical & environmental plant physiology (2nd ed.). Academic Press.
  61. Ouda, O. K. M., Raza. S. A., Nizami. A. S., Rehan. M., Al-Waked. R., & Korres. N. E. (2016). Waste to energy potential: a case study of Saudi Arabia. Renewable and Sustainable Energy Reviews, 61, 328-340. https://doi.org/10.1016/j.rser.2016.04.005
  62. Patil, P., & Kumar, K. (2017). Biological carbon sequestration through fruit crops (perennial crops - natural “sponges” for absorbing carbon dioxide from atmosphere). Plant Archives, 17(2), 1041-1046. http://plantarchives.org/17-2/1041-1046%20(3939).pdf
  63. Paudel, I., Halpern, M., Wagner, Y., Raveh, E., Yermiyahu, U., Hoch, G., & Klein, T. (2018). Elevated CO2 compensates for drought effects in lemon saplings via stomatal downregulation, increased soil moisture, and increased wood carbon storage. Environmental and Experimental Botany, 148, 117-127. https://doi.org/10.1016/j.envexpbot.2018.01.004
  64. Pérez, C., Nicklin, C., Dangles, O., Vanek, S., Sherwood, S., Halloy, S., Garrett, K., & Forbes, G. (2010). Climate change in the High Andes: Implications and adaptation strategies for small-scale farmers. International Journal of Environmental, Cultural, Economic and Social Sustainability, 6(5), 71-88. https://doi.org/10.18848/1832-2077/CGP/v06i05/54835
  65. Pérez-Jiménez, M., Hernández-Munuera, M., Piñero, M. C., López-Ortega, G., & del Amor F. M. (2017). CO2 effects on the waterlogging response of ‘Gisela 5’ and ‘Gisela 6’ (Prunus cerasus × Prunus canescens) sweet cherry (Prunus avium) rootstocks. Journal of Plant Physiology, 213, 178-187. https://doi.org/10.1016/j.jplph.2017.03.011
  66. Polley, H. W. (2002). Implications of atmospheric and climate change for crop yield. Crop Science, 42, 131-140. https://doi.org/10.2135/cropsci2002.1310
  67. Prior, S. A., Runion, G. B., Torbert, H. A., Idso, S. B., & Kimball, B. A. (2012). Sour orange fine root distribution after seventeen years of atmospheric CO2 enrichment. Agricultural and Forest Meteorology, 162-63, 85-90. https://doi.org/10.1016/j.agrformet.2012.04.014
  68. Pritchard, S. G., & Amthor, J. S. (2005). Crops and environmental change. Food Products Press, The Haworth Press.
  69. Rajan, R., Feza, M., Pandey, K., Aman, A., & Kumar, V. (2020). Climate change and resilience in fruit crops. In Climate change and its effects on Agriculture (pp. 337-354). Biotec Books.
  70. Ramírez, F., & Kallarackal, J. (2015). Responses of fruit trees to global climate change. Springer Briefs in Plant Science. Springer International Publishing. https://doi.org/10.1007/978-3-319-14200-5
  71. Reich, P. B., Hobbie, S. E., Lee, T., Ellsworth, D. S., West, J. B., Tilman, D., Knops, J. M. H., Naeem, S., & Trost, J. (2006). Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature, 440, 922-925. https://doi.org/10.1038/nature04486
  72. Sánchez, S., Morea, R., Serrano-Grijalva, L., Meco, A., & Sánchez-Andrés, R. A. (2015). Free Air CO2 Enrichment (FACE) facility in a wetland to study the effects of elevated atmospheric carbon dioxide: System description and performance. Wetlands, 35, 193-205. http://dx.doi.org/10.1007/s13157-014-0614-2
  73. Sharma, S., Rana, V. S., Prasad, H., Lakra, J., & Sharma, U. (2021). Appraisal of carbon capture, storage, and utilization through fruit crops. Frontiers in Environmental Science, 9, 700768. https://doi.org/10.3389/fenvs.2021.700768
  74. Song, H., Li, Y., Xu, X., Zhang, J., Zheng, S., Hou, L., Xing, G., & Li, M. (2020). Analysis of genes related to chlorophyll metabolism under elevated CO2 in cucumber (Cucumis sativus L.). Scientia Horticulturae, 261, 108988. https://doi.org/10.1016/j.scienta.2019.108988
  75. Stöckle, C. O., Marsal J., & Villar J. M. (2011). Impact of climate change on irrigated tree fruit production. Acta Horticulturae, 889, 41-52. https://doi.org/10.17660/ActaHortic.2011.889.2
  76. Sun, P., Mantri, N., Lou, H., Hu, Y., Sun, D., Zhu, Y., Dong, T., & Lu, H. (2012). Effects of elevated CO2 and temperature on yield and fruit quality of strawberry (Fragaria ananassa Duch.) at two levels of nitrogen application. PLoS ONE, 7(79), e41000. https://doi.org/10.1371/journal.pone.0041000
  77. Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal (6th ed.). Artmed.
  78. Tognetti, R., Raschi, A., Longobucco, A., Lanini, M., & Bindi, M. (2005). Hydraulic properties and water relations of Vitis vinifera L. exposed to elevated CO2 concentrations in a free air CO2 enrichment (FACE). Phyton, 45(3), 243-256. https://www.zobodat.at/pdf/PHY_45_3_0243-0256.pdf
  79. Treutter, D. (2010). Managing phenol contents in crop plants by phytochemical farming and breeding-visions and constraints. International Journal of Molecular Sciences, 11, 807-857. https://doi.org/10.3390/ijms11030807
  80. Vélez, J. E., Polanía, W., & Beltrán, N. (2019). Efecto del régimen de riego en la producción de volátiles que incide en el aroma de la pera variedad Triunfo de Viena (Pyrus communis L.). Revista Colombiana de Ciencias Hortícolas, 13(3), 348-358. https://doi.org/10.17584/rcch.2019v13i3.10920
  81. Vélez-Sánchez, J. E., Balaguera-López, H. E., & Álvarez-Herrera, J. G. (2021). Effect of regulated deficit irrigation (RDI) on the production and quality of pear Triunfo de Viena variety under tropical conditions. Scientia Horticulturae, 278, 109880. https://doi.org/10.1016/j.scienta.2020.109880
  82. Wang, S. Y., Bunce J. A., & Maas, J. L. (2003). Elevated carbon dioxide increases contents of antioxidant compounds in field-grown strawberries. Journal of Agriculture and Food Chemistry, 51, 4315-4320. https://doi.org/10.1021/jf021172d
  83. Wei, Z., Du, T., Li, X., Fang, L., & Liu, F. (2018). Interactive effects of elevated CO2 and N fertilization on yield and quality of tomato grown under reduced irrigation regimes. Frontiers in Plant Science, 9, 328. https://doi.org/10.3389/fpls.2018.00328
  84. Weiss, I., Mizrahi Y., & Raveh, E. (2010). Effect of elevated CO2 on vegetative and reproductive growth characteristics of the CAM plants Hylocereus undatus and Selenicereus megalanthus. Scientia Horticulturae, 123, 531-536. https://doi.org/10.1016/j.scienta.2009.11.002
  85. Wohlfahrt, Y., Smith, J. P., Tittmann, S., Honermeier, B, & Stoll, M. (2018). Primary productivity and physiological responses of Vitis vinifera L. cvs. under Free Air Carbon dioxide Enrichment (FACE). European Journal of Agronomy, 101, 149-162. https://doi.org/10.1016/j.eja.2018.09.005
  86. Wu, T., Wang, Y., Yu1, C., Chiarawipa, R., Zhang, X., Han, Z., & Wu, L. (2012). Carbon sequestration by fruit trees - Chinese apple orchards as an example. PLoS ONE, 7(6), e38883. https://doi.org/10.1371/journal.pone.0038883
  87. Yohannes, H. (2016). A review on relationship between climate change and agriculture. Journal of Earth Science and Climate Change, 7(2), 335. https://doi.org/10.4172/2157-7617.1000335
  88. Zandalinas, S. I., Fritschi, F. B., & Mittler, R. (2021). Global warming, climate change, and environmental pollution: Recipe for a multifactorial stress combination disaster. Trends in Plant Science, 26(6), 588-599. https://doi.org/10.1016/j.tplants.2021.02.011

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

308 | 182




 

Creative Commons License Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2022 Ciencia & Tecnología Agropecuaria