Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio
Publicado: 2018-08-22

Métodos de extracción, refinación y concentración de aceite de pescado como fuente de ácidos grasos omega-3

Universidad del Cauca
##plugins.generic.jatsParser.article.authorBio##
×

Jeimmy Rocío Bonilla

Ingeniera Agroindustrial, Magister en Diseño y Gestión de Procesos, investigadora en Grupo de investigación ASUBAGROIN de la Facultad de Ciencias Agrarias de la Universidad del Cauca

Universidad del Cauca
##plugins.generic.jatsParser.article.authorBio##
×

José Luis Hoyos Concha

Docente titular en Universidad del Cauca. Magister en Ingeniería de Alimentos, Especialista en Biotecnología. Director del grupo de investigación ASUBAGROIN
Ácidos grasos poliinsaturados lípidos purificación fraccionamiento ácido eicosapentaenóico ácido docosahexaenóico

Resumen

El aceite de pescado es un producto industrial de alto valor nutricional por su contenido de ácidos grasos poliinsaturados (AGPI) Omega-3, actualmente valorados por su efectos benéficos en la salud. Estudios y avances realizados desde el año 2000 en la extracción de aceite de pescado de diversas especies, su refinación y concentración de AGPI, son revisados en este artículo. Las técnicas de extracción van desde tecnologías convencionales como prensado húmedo y extracción por solventes, hasta tecnologías propuestas más recientemente como fluidos supercríticos y ensilaje de pescado. Así mismo, la refinación es realizada por métodos tradicionales, sin embargo existen nuevas tecnologías con potencial para su aplicación en aceite de pescado. Por otro lado, el interés en la concentración de AGPI Omega-3 ha crecido y varias técnicas han sido propuestas como winterización, métodos enzimáticos, fraccionamiento por fluidos supercríticos, complejación con urea, fraccionamiento por métodos cromatográficos y concentración por membranas. La información recopilada indica una tendencia a combinar diferentes tecnologías convencionales y emergentes a fin de mejorar los rendimientos y pureza del producto obtenido.

Jeimmy Rocío Bonilla, Universidad del Cauca

Ingeniera Agroindustrial, Magister en Diseño y Gestión de Procesos, investigadora en Grupo de investigación ASUBAGROIN de la Facultad de Ciencias Agrarias de la Universidad del Cauca

José Luis Hoyos Concha, Universidad del Cauca

Docente titular en Universidad del Cauca. Magister en Ingeniería de Alimentos, Especialista en Biotecnología. Director del grupo de investigación ASUBAGROIN
Bonilla, J. R., & Hoyos Concha, J. L. (2018). Métodos de extracción, refinación y concentración de aceite de pescado como fuente de ácidos grasos omega-3. Ciencia &Amp; Tecnología Agropecuaria, 19(3), 621–644. https://doi.org/10.21930/rcta.vol19_num2_art:684
  1. Aarthy, M., Saravanan, P., Ayyadurai, N., Gowthaman, M. K., & Kamini, N. R. (2016). A two step process for production of omega 3-polyunsaturated fatty acid concentrates from sardine oil using Cryptococcus sp. MTCC 5455 lipase. Journal of Molecular Catalysis B: Enzymatic, 125, 25-33. https://doi.org/10.1016/j.molcatb.2015.12.013
  2. Adeniyi, O. D., & Bawa, A. A. (2006). Mackerel (Scomber Scrombrus) oil extraction and evaluation as raw materials for industrial utilization. Leonardo Journal of Sciences, 5(8), 33-42.
  3. Adeoti, I. A., & Hawboldt, K. (2014). A review of lipid extraction from fish processing by-product for use as a biofuel. Biomass and Bioenergy, 63, 330-340. Retrieved from https://doi.org/10.1016/j.biombioe.2014.02.011
  4. Alkio, M., Gonzalez, C., Jäntti, M., & Aaltonen, O. (2000). Purification of polyunsaturated fatty acid esters from tuna oil with supercritical fluid chromatography. Journal of the American Oil Chemists' Society, 77(3), 315-321. https://doi.org/10.1007/s11746-000-0051-3
  5. Ashjari, M., Mohammadi, M., & Badri, R. (2015). Selective concentration of eicosapentaenoic acid and docosahexaenoic acid from fish oil with immobilized/stabilized preparations of Rhizopus oryzae lipase. Journal of Molecular Catalysis B: Enzymatic, 122, 147-155. https://doi.org/10.1016/j.molcatb.2015.08.017
  6. Bako, T., Umogbai, V. I., & Obetta, S. E. (2014). Extraction and characterizatin of Mackery (Scomber scombrus) oil for industrial use. Researcher, 6(8), 80-85.
  7. Batista, I., Ramos, C., Coutinho, J., Bandarra, N. M., & Nunes, M. L. (2010). Characterization of protein hydrolysates and lipids obtained from black scabbardfish (Aphanopus carbo) by-products and antioxidative activity of the hydrolysates produced. Process Biochemistry, 45(1), 18-24. https://doi.org/10.1016/j.procbio.2009.07.019
  8. Batista, I., Ramos, C., Mendonca, R., & Nunes, M. L. (2009). Enzymatic hydrolysis of sardine (Sardina pilchardus) by-products and lipid recovery. Journal of Aquatic Food Product Technology, 18(1-2), 120-134. https://doi.org/10.1080/10498850802581823
  9. Belarbi, E.-H., Molina, E., & Chisti, Y. (2000). A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Process Biochemistry, 35(9), 951-969. https://doi.org/10.1016/S0032-9592(00)00126-6
  10. Boran, G., Karacam, H., & Boran, M. (2006). Changes in the quality of fish oils due to storage temperature and time. Food Chemistry, 98, 693-698. https://doi.org/10.1016/j.foodchem.2005.06.041
  11. Cerón, I. X., Cardona, C. A., & Toro, L. A. (2012). Simulación del proceso de concentración de aceite esencial de Cidrón (Lippia citriodora) por destilación molecular de película descendente. Ingeniería Y Competitividad, 120(1), 107-120. https://doi.org/10.25100/iyc.v14i1.2642
  12. Chakraborty, K., & Joseph, D. (2015a). Cooking and pressing is an effective and eco-friendly technique for obtaining high quality oil from Sardinella longiceps. European Journal of Lipid Science and Technology, 117(6), 837-850. https://doi.org/10.1002/ejlt.201400539
  13. Chakraborty, K., & Joseph, D. (2015b). Production and characterization of refined oils obtained from Indian oil sardine (Sardinella longiceps). Journal of Agricultural and Food Chemistry, 63(3), 998-1009. https://doi.org/10.1021/jf505127e
  14. Chakraborty, K., Joseph, D., & Joseph, D. (2016). Changes in the quality of refined fish oil in an accelerated storage study. Journal of Aquatic Food Product Technology, 25(7), 1155-1170. https://doi.org/10.1080/10498850.2015.1036482
  15. Chakraborty, K., & Paul Raj, R. (2009). Selective enrichment of n-3 polyunsaturated fatty acids with C18-C20 acyl chain length from sardine oil using Pseudomonas fluorescens MTCC 2421 lipase. Food Chemistry, 114(1), 142-150. https://doi.org/10.1016/j.foodchem.2008.09.029
  16. Chakraborty, K., & Raj, R. P. (2007). Eicosapentaenoic acid enrichment from sardine oil by argentation chromatography. Journal of Agricultural and Food Chemistry, 55(18), 7586-7595. https://doi.org/10.1021/jf071407r
  17. Chantachum, S., Benjakul, S., & Sriwirat, N. (2000). Separation and quality of fish oil from precooked and non-precooked tuna heads. Food Chemistry, 69, 289-294. https://doi.org/10.1016/S0308-8146(99)00266-6
  18. Cmolik, J., & Pokorny, J. (2000). Physical refining of edible oil. European Journal of Lipid Science and Technology, 102, 472-486. https://doi.org/10.1007/BF02636265
  19. Coronado, M., Vega, S., Gutiérrez, R., García, B., & Díaz, G. (2006). Los ácidos grasos Omega-3 y Omega-6: Nutrición, Bioquímica y Salud. Revista de Educación Bioquímica, 25(3), 72-79.
  20. Corrêa, A. P. A., Peixoto, C. A., Gonçalves, L. A. G., & Cabral, F. A. (2008). Fractionation of fish oil with supercritical carbon dioxide. Journal of Food Engineering, 88(3), 381-387. https://doi.org/10.1016/j.jfoodeng.2008.02.025
  21. Crexi, V. T., Monte, M. L., Almeida, L., Soares, D. S., Antonio, L., & Pinto, A. (2010). Production and refinement of oil from carp (Cyprinus carpio) viscera. Food Chemistry, 119, 945-950. https://doi.org/10.1016/j.foodchem.2009.07.050
  22. Cunha, D. C., Crexi, T., Antonio, L., & Pinto, A. (2009). Winterization of fish oil with solvent. Ciênc.Tecnol.Aliment., 1, 207-213. https://doi.org/10.1590/S0101-20612009000100032
  23. De Greyt, W. F. J. (2012). Current and future technologies for the sustainable and cost-efficient production of high quality food oils. European Journal of Lipid Science and Technology, 114(10), 1126-1139. https://doi.org/10.1002/ejlt.201200068
  24. de Morais Coutinho, C., Chiu, M. C., Basso, R. C., Ribeiro, A. P. B., Gonçalves, L. A. G., & Viotto, L. A. (2009). State of art of the application of membrane technology to vegetable oils: A review. Food Research International, 42(5-6), 536-550. https://doi.org/10.1016/j.foodres.2009.02.010
  25. Díaz, M. A., Bonilla, R., Hoyos, J. L., & Benitez, R. (2016). Evaluación de refinación de aceite extraído de ensilaje de subproductos de trucha arcoíris (Oncorhynchus mykiss). Agronomia Colombiana, 34(Suplemento), 351-354.
  26. Dillon, J. T., Aponte, J. C., Tarozo, R., & Huang, Y. (2013). Purification of omega-3 polyunsaturated fatty acids from fish oil using silver-thiolate chromatographic material and high performance liquid chromatography. Journal of Chromatography A, 1312, 18-25. https://doi.org/10.1016/j.chroma.2013.08.064
  27. Dumay, J., Donnay, C., Barnathan, G., Jaouen, P., & Bergé, J. P. (2006). Improvement of lipid and phospholipid recoveries from sardine (Sardina pilchardus) viscera using industrial proteases. Process Biochemistry, 41(11), 2327-2332. https://doi.org/10.1016/j.procbio.2006.04.005
  28. Espinosa, S., Díaz, M. S., & Brignole, E. A. (2002). Thermodynamic modeling and process optimization of supercritical fluid fractionation of fish oil fatty acid ethyl esters. Industrial and Engineering Chemistry Research, 41, 1516-1527. https://doi.org/10.1021/ie010470h
  29. Fagan, P., & Wijesundera, C. (2013). Rapid isolation of omega-3 long-chain polyunsaturated fatty acids using monolithic high performance liquid chromatography columns. Journal of Separation Science, 36(11), 1743-52. https://doi.org/10.1002/jssc.201201156
  30. Ferdosh, S., Sarker, M. Z. I., Rahman, N. N. N. A., Akand, M. J. H., Ghafoor, K., Awang, M. Bin, & Kadir, M. O. A. (2013). Supercritical carbon dioxide extraction of oil from Thunnus tonggol head by optimization of process parameters using response surface methodology. Korean Journal of Chemical Engineering, 30(7), 1466-1472. https://doi.org/10.1007/s11814-013-0070-3
  31. Ferdosh, S., Sarker, Z., Norulaini, N., Akanda, J., & Kadir, O. (2014). Simultaneous extraction and fractionation of fish oil from tuna by-product using supercritical carbon dioxide (SC-CO2). Journal of Aquatic Food Product Technology, 1-28. https://doi.org/10.1080/10498850.2013.843629
  32. Ferdosh, S., Sarker, Z., Norulaini, N., Oliveira, A., Yunus, K., Chowdury, A. J., … Omar, M. (2014). Quality of tuna fish oils extracted from processing the by-products of three species of neritic tuna using supercritical carbon dioxide. Journal of Food Processing and Preservation, 39, 432-441. https://doi.org/10.1111/jfpp.12248
  33. Ferraz de Arruda, L., Borghesi, R., & Oetterer, M. (2007). Use of fish waste as silage - A review. Brazilian Archives of Biology and Technology, 50(5), 879-886. https://doi.org/10.1590/S1516-89132007000500016
  34. Fiori, L., Solana, M., Tosi, P., Manfrini, M., Strim, C., & Guella, G. (2012). Lipid profiles of oil from trout (Oncorhynchus mykiss) heads, spines and viscera: Trout by-products as a possible source of omega-3 lipids? Food Chemistry, 134, 1088-1095. Retrieved from https://doi.org/10.1016/j.foodchem.2012.03.022
  35. Gbogouri, G. a., Linder, M., Fanni, J., & Parmentier, M. (2006). Analysis of lipids extracted from salmon (Salmo salar) heads by commercial proteolytic enzymes. European Journal of Lipid Science and Technology, 108(9), 766-775. https://doi.org/10.1002/ejlt.200600081
  36. Gedi, M. A., Bakar, J., Mariod, A. A., Road, C., Arabia, A., & North, K. (2015). Optimization of supercritical carbon dioxide (CO2) extraction of sardine (Sardinella lemuru Bleeker) oil using response surface methodology (RSM). Grasas Y Aceites, 66(2), 1-12. https://doi.org/10.3989/gya.0824142
  37. Ghasemian, S., Sahari, M. A., Barzegar, M., & Ahmadi Gavlighi, H. (2016). Omega-3 polyunsaturated fatty acids concentration using synthesized poly-vinylidene fluoride (PVDF) asymmetric membranes. JAOCS, Journal of the American Oil Chemists' Society, 93(9), 1201-1210. https://doi.org/10.1007/s11746-016-2876-8
  38. Ghasemian, S., Sahari, M. A., Barzegar, M., & Gavlighi, H. A. (2015). Concentration of Omega-3 polyunsaturated fatty acids by polymeric membrane. International Journal of Food Science & Technology, 50(11), 2411-2418. https://doi.org/10.1111/ijfs.12907
  39. Gironi, F., & Maschietti, M. (2006). Separation of fish oils ethyl esters by means of supercritical carbon dioxide: Thermodynamic analysis and process modelling. Chemical Engineering Science, 61(15), 5114-5126. https://doi.org/10.1016/j.ces.2006.03.041
  40. Glowacz, A., Tynek, M., Malinowska, E., Martysiak, D., Pawlowicz, R., & Kolodziejska, I. (2016). Comparison of oil yield and quality obtained by different extraction procedures from salmon (Salmo salar) processing byproducts. European Journal of Lipid Science and Technology, 118, 1-9. https://doi.org/10.1002/ejlt.201500269
  41. Goosen, N. J., de Wet, L. F., & Görgens, J. F. (2014). The effects of protein hydrolysates on the immunity and growth of the abalone Haliotis midae. Aquaculture, 428-429, 243-248. https://doi.org/10.1016/j.aquaculture.2014.03.018
  42. Goosen, N. J., de Wet, L. F., Görgens, J. F., Jacobs, K., & De Bruyn, A. (2014). Fish silage oil from rainbow trout processing waste as alternative to conventional fish oil in formulated diets for Mozambique tilapia Oreochromis mossambicus. Animal Feed Science and Technology, 188, 74-84. https://doi.org/10.1016/j.anifeedsci.2013.10.019
  43. Guil-Guerrero, J. L., & Belarbi, E.-H. (2001). Purification process for cod liver oil polyunsaturated fatty acids. Journal of the American Oil Chemists' Society, 78(5), 477-484. https://doi.org/10.1007/s11746-001-0289-9
  44. Hajeb, P., Selamat, J., Afsah-Hejri, L., Mahyudin, N. A., Shakibazadeh, S., & Sarker, M. Z. I. (2015). Effect of supercritical fluid extraction on the reduction of toxic elements in fish oil compared with other extraction methods. Journal of Food Protection, 78(1), 172-179. https://doi.org/10.4315/0362-028X.JFP-14-248
  45. Hao, S., Wei, Y., Li, L., Yang, X., Cen, J., Huang, H., … Yuan, X. (2015). The effects of different extraction methods on composition and storage stability of sturgeon oil. Food Chemistry, 173, 274-282. Retrieved from https://doi.org/10.1016/j.foodchem.2014.09.154
  46. Haq, M., Ahmed, R., Cho, Y.-J., & Chun, B.-S. (2016). Quality properties and bio-potentiality of edible oils from atlantic salmon by-products extracted by supercritical carbon dioxide and conventional methods. Waste and Biomass Valorization, 1-15. https://doi.org/10.1007/s12649-016-9710-2
  47. Homayooni, B., Sahari, M. A., & Barzegar, M. (2014). Concentrations of omega-3 fatty acids from rainbow sardine fish oil by various methods. International Food Research Journal, 21(2), 743-748.
  48. Huang, J., & Sathivel, S. (2010). Purifying salmon oil using adsorption, neutralization, and a combined neutralization and adsorption process. Journal of Food Engineering, 96, 51-58. https://doi.org/10.1016/j.jfoodeng.2009.06.042
  49. Immanuel, G., Sathasivan, S., Shankar, V. S., Peter, M. J. P., & Palavesam, A. (2009). Processing and characterisation of low cost Balistid fish Sufflamen capistratus liver oil for edible purpose. Food Chemistry, 115(2), 430-435. https://doi.org/10.1016/j.foodchem.2008.12.023
  50. Kahveci, D., & Xu, X. (2011). Repeated hydrolysis process is effective for enrichment of omega 3 polyunsaturated fatty acids in salmon oil by Candida rugosa lipase. Food Chemistry, 129(4), 1552-1558. https://doi.org/10.1016/j.foodchem.2011.05.142
  51. Kołakowska, A., Domiszewski, Z., Kozłowski, D., & Gajowniczek, M. (2006). Effects of rainbow trout freshness onn-3 polyunsaturated fatty acids in fish offal. European Journal of Lipid Science and Technology, 108(9), 723-729. https://doi.org/10.1002/ejlt.200600054
  52. Kumar, P. K. P., & Krishna, A. G. G. (2015). Effect of different deacidification methods on phytonutrients retention in deacidified fractionated palm oil. Journal of the American Oil Chemists' Society, 92(5), 645-658. https://doi.org/10.1007/s11746-015-2626-3
  53. Laplante, S., Souchet, N., & Bryl, P. (2009). Comparison of low-temperature processes for oil and coenzyme Q10 extraction from mackerel and herring. European Journal of Lipid Science and Technology, 111, 135-141. https://doi.org/10.1002/ejlt.200800133
  54. Létisse, M., & Comeau, L. (2008). Enrichment of eicosapentaenoic acid and docosahexaenoic acid from sardine by-products by supercritical fluid fractionation. Journal of Separation Science, 31(8), 1374-1380. https://doi.org/10.1002/jssc.200700501
  55. Létisse, M., Rozières, M., Hiol, A., Sergent, M., & Comeau, L. (2006). Enrichment of EPA and DHA from sardine by supercritical fluid extraction without organic modifier. The Journal of Supercritical Fluids, 38(1), 27-36. https://doi.org/10.1016/j.supflu.2005.11.013
  56. Lin, T. J., Chen, S. W., & Chang, A. C. (2006). Enrichment of n-3 PUFA contents on triglycerides of fish oil by lipase-catalyzed trans-esterification under supercritical conditions. Biochemical Engineering Journal, 29, 27-34. https://doi.org/10.1016/j.bej.2005.02.035
  57. Linder, M., Fanni, J., & Parmentier, M. (2005). Proteolytic extraction of salmon oil and PUFA concentration by lipases. Marine Biotechnology, 7(1), 70-76. https://doi.org/10.1007/s10126-004-0149-2
  58. Linder, M., Matouba, E., Fanni, J., & Parmentier, M. (2002). Enrichment of salmon oil with n-3 PUFA by lipolysis, filtration and enzymatic re-esterification. European Journal of Lipid Science and Technology, 104(8), 455-462. https://doi.org/10.1002/1438-9312(200208)104:8<455::AID-EJLT455>3.0.CO;2-Q
  59. Liu, S., Zhang, C., Hong, P., & Ji, H. (2006). Concentration of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) of tuna oil by urea complexation: Optimization of process parameters. Journal of Food Engineering, 73(3), 203-209. https://doi.org/10.1016/j.jfoodeng.2005.01.020
  60. Llanes, Toledo, J., Savón, L., & Gutiérrez, O. (2012). Composición y calidad de la fracción lipídica de los ensilajes de residuos de tilapias. Revista Cubana de Investigaciones Pesqueras, 29, 44-48.
  61. Lopes, B. L. F., Sánchez-Camargo, A. P., Ferreira, A. L. K., Grimaldi, R., Paviani, L. C., & Cabral, F. A. (2012). Selectivity of supercritical carbon dioxide in the fractionation of fish oil with a lower content of EPA+DHA. The Journal of Supercritical Fluids, 61, 78-85. https://doi.org/10.1016/j.supflu.2011.09.015
  62. López-Martínez, J. C., Campra-Madrid, P., & Guil-Guerrero, J. L. (2004). γ-Linolenic acid enrichment from Borago officinalis and Echium fastuosum seed oils and fatty acids by low temperature crystallization. Journal of Bioscience and Bioengineering, 97(5), 294-298. https://doi.org/10.1016/S1389-1723(04)70208-X
  63. Maschietti, M., & Pedacchia, A. (2014). Supercritical carbon dioxide separation of fish oil ethyl esters by means of a continuous countercurrent process with an internal reflux. The Journal of Supercritical Fluids, 86, 76-84. https://doi.org/10.1016/j.supflu.2013.12.003
  64. Mbatia, B., Adlercreutz, D., Adlercreutz, P., Mahadhy, A., Mulaa, F., & Mattiasson, B. (2010). Enzymatic oil extraction and positional analysis of Omega 3 fatty acids in Nile perch and salmon heads. Process Biochemistry, 45, 815-819. Retrieved from https://doi.org/10.1016/j.procbio.2010.02.010
  65. Melgosa, R., Sanz, M. T., Solaesa, Á. G., Paz, E. De, Beltrán, S., & Lamas, D. L. (2017). Supercritical carbon dioxide as solvent in the lipase-catalyzed ethanolysis of fi sh oil : Kinetic study. Biochemical Pharmacology, 17, 170-179. https://doi.org/10.1016/j.jcou.2016.11.011
  66. Menegazzo, M. L., Petenuci, M. E., & Fonseca, G. G. (2014). Production and characterization of crude and refined oils obtained from the co-products of Nile tilapia and hybrid sorubim processing. Food Chemistry, 157, 100-104. Retrieved from https://doi.org/10.1016/j.foodchem.2014.01.121
  67. Misra, G., Nandi, S., & Sumit Nandi, C. (2014). Enzymatic deacidification of rice bran oil containing high free fatty acids with recycling. Che Sci Rev Lett, 2(5), 376-381.
  68. Moharana, T. R., Byreddy, A. R., Puri, M., Barrow, C., & Rao, N. M. (2016). Selective enrichment of omega-3 fatty acids in oils by phospholipase A1. PLoS ONE, 11(3), 1-14. https://doi.org/10.1371/journal.pone.0151370
  69. Motalebi Moghanjoghi, A., Hashemi, G., Mizani, M., & Tavakoli, H. R. (2015). The effects of refining steps on Kilka (Clupeonella delicatula) fish oil quality. Iranian Journal of Fisheries Sciences, 14(2), 382-392.
  70. Muñoz, A., Bucheli, J., Bonilla, R., & Hoyos, J. L. (2016). Evaluación de la tecnología de ensilaje como método de extracción de aceite de subproductos de trucha arcoíris (Oncorhynchus mykiss). Vitae, 23(1), S278-282.
  71. Nguyen, T. M. H. (2013). Protein and lipid recovery from tuna head using industrial protease. J. Sci. & Devel., 11(8), 1150-1158.
  72. Noriega, J. A., Ortega, J., Angulo, O., García, H. S., Medina, L. A., & Gámez, N. (2009). Oil production from sardine (Sardinops sagax caerulea). CyTA - Journal of Food, 7(3), 173-179. https://doi.org/10.1080/19476330903010243
  73. Oliveira, A. C. M., & Miller, M. R. (2014). Purification of Alaskan Walleye Pollock (Gadus chalcogrammus) and New Zealand Hoki (Macruronus novaezelandiae) liver oil using short path distillation. Nutrients, 6, 2059-2076. https://doi.org/10.3390/nu6052059
  74. Oliveira, D. A. S. B. De, Minozzo, M. G., Licodiedoff, S., & Waszczynskyj, N. (2016). Physicochemical and sensory characterization of refined and deodorized tuna (Thunnus albacares) by-product oil obtained by enzymatic hydrolysis. Food Chemistry, 207, 187-194. https://doi.org/10.1016/j.foodchem.2016.03.069
  75. Olli, J. J., Breivik, H., & Thorstad, O. (2013). Removal of persistent organic pollutants in fish oils using short-path distillation with a working fluid. Chemosphere, 92(3), 273-278. https://doi.org/10.1016/j.chemosphere.2013.02.037
  76. Organización de las Naciones Unidas para la Alimentación y la Agricultura. (1986). The production of fish meal and oil. Retrieved May 21, 2015, from http://www.fao.org/docrep/003/x6899e/X6899E00.HTM
  77. Perretti, G., Motori, a., Bravi, E., Favati, F., Montanari, L., & Fantozzi, P. (2007). Supercritical carbon dioxide fractionation of fish oil fatty acid ethyl esters. Journal of Supercritical Fluids, 40(3), 349-353. https://doi.org/10.1016/j.supflu.2006.07.020
  78. Pieck, C. A., Crampon, C., Charton, F., & Badens, E. (2016). A new model for the fractionation of fish oil FAEEs. The Journal of Supercritical Fluids, 1-8. http://doi.org/10.1016/j.supflu.2016.05.02
  79. Pramparo, M., Prizzon, S., & Martinello, M. a. (2005). Estudio de la purificación de ácidos grasos, tocoferoles y esteroles a partir del destilado de desodorización. Grasas Y Aceites, 56(3), 228-234. https://doi.org/10.3989/gya.2005.v56.i3.112
  80. Qi-yuan, L., Jun-qing, Q., & Xiao-ge, W. (2016). Optimization of enzymatic fish oil extraction from mackerel viscera by response surface methodology. International Food Research Journal, 23(3), 992-997.
  81. Rai, K., Swapna, H. C., Bhaskar, N., Halami, P. M., & Sachindra, N. M. (2010). Effect of fermentation ensilaging on recovery of oil from fresh water fish viscera. Enzyme and Microbial Technology, 46, 9-13. https://doi.org/10.1016/j.enzmictec.2009.09.007
  82. Ribeiro, V., Oliveira, A., Bechtel, P., & Prentice, C. (2013). Avaliação do processamento a baixas temperaturas do óleo de fígado de Alaska pollock (Theragra chalcogramma) Evaluation of low temperature rendering of. Brazilian Journal of Food Technology, 16(2), 99-106. Retrieved from https://doi.org/10.1590/S1981-67232013005000013
  83. Riha, V., & Brunner, G. (2000). Separation of fish oil ethyl esters with supercritical carbon dioxide. The Journal of Supercritical Fluids, 17(1), 55-64. https://doi.org/10.1016/S0896-8446(99)00038-8
  84. Rubio, N., Beltrán, S., Jaime, I., Diego, S. M. De, Sanz, M. T., & Carballido, J. R. (2010). Production of omega-3 polyunsaturated fatty acid concentrates : A review. Innovative Food Science and Emerging Technologies, 11, 1-12. https://doi.org/10.1016/j.ifset.2009.10.006
  85. Rubio, N., Diego, S. M. De, Beltrán, S., Jaime, I., Sanz, M. T., & Rovira, J. (2008). Supercritical fluid extraction of the omega-3 rich oil contained inhake (Merluccius capensis-Merluccius paradoxus) by-products: Study of the influence of process parameters on the extraction yield and oil quality. The Journal of Supercritical Fluids, 47, 215-226. https://doi.org/10.1016/j.supflu.2008.07.007
  86. Rubio, N., Diego, S. M. De, Beltrán, S., Jaime, I., Sanz, M. T., & Rovira, J. (2012). Supercritical fluid extraction of fish oil from fish by-products : A comparison with other extraction methods. Journal of Food Engineering, 109, 238-248. https://doi.org/10.1016/j.jfoodeng.2011.10.011
  87. Sahena, F., Zaidul, I. S. M., Jinap, S., Jahurul, M. H. A., Khatib, A., & Norulaini, N. A. N. (2010). Extraction of fish oil from the skin of Indian mackerel using supercritical fluids. Journal of Food Engineering, 99(1), 63-69. https://doi.org/10.1016/j.jfoodeng.2010.01.038
  88. Sahena, F., Zaidul, I. S. M., Jinap, S., Saari, N., Jahurul, H. a., Abbas, K. a., & Norulaini, N. a. (2009). PUFAs in fish: Extraction, fractionation, importance in health. Comprehensive Reviews in Food Science and Food Safety, 8(2), 59-74. https://doi.org/10.1111/j.1541-4337.2009.00069.x
  89. Santos, C. E. dos, Silva, J. da, Zinani, F., Wander, P., & Gomes, L. P. (2015). Oil from the acid silage of Nile tilapia waste: Physicochemical characteristics for its application as biofuel. Renewable Energy, 80, 331-337. https://doi.org/10.1016/j.renene.2015.02.028
  90. Sarker, M. Z. I., Selamat, J., Habib, A. S. M. A., Ferdosh, S., Akanda, M. J. H., & Jaffri, J. M. (2012). Optimization of supercritical CO2 extraction of fish oil from viscera of African Catfish (Clarias gariepinus). International Journal of Molecular Sciences, 13(9), 11312-11322. https://doi.org/10.3390/ijms130911312
  91. Shamsudin, S., & Salimon, J. (2006). Physicochemical characteristics of aji-aji fish (Seriola nigrofasciata) lipids. Malaysia Journal of Analytical Sciences, 10(1), 55-58.
  92. Shin, S. K., Sim, J. E., Kishimura, H., & Chun, B. S. (2012). Characteristics of menhaden oil ethanolysis by immobilized lipase in supercritical carbon dioxide. Journal of Industrial and Engineering Chemistry, 18(1), 546-550. https://doi.org/10.1016/j.jiec.2011.11.065
  93. Silva Aguiar, G. P., & Soares Goulart, G. A. (2013). Utilização de material residual da indústria de pescado para obtenção de óleo e farinha. Tecnol. & Ciên. Agropec., 7(4), 55-60. http://doi.org/10.13140/2.1.4435.5844
  94. Slizyte, R., Dauksas, E., Falch, E., Storro, I., & Rustad, T. (2005). Yield and composition of different fractions obtained after enzymatic hydrolysis of cod (Gadus morhua) by-products. Process Biochemistry, 40, 1415-1424. https://doi.org/10.1016/j.procbio.2004.06.033
  95. Slizyte, R., Rustad, T., & Storro, I. (2005). Enzymatic hydrolysis of cod (Gadus morhua) by-products Optimization of yield and properties of lipid and. Process Biochemistry, 40, 3680-3692. https://doi.org/10.1016/j.procbio.2005.04.007
  96. Solaesa, Á. G., Sanz, M. T., Falkeborg, M., Beltrán, S., & Guo, Z. (2016). Production and concentration of monoacylglycerols rich in omega-3 polyunsaturated fatty acids by enzymatic glycerolysis and molecular distillation. Food Chemistry, 190(2016), 960-967. https://doi.org/10.1016/j.foodchem.2015.06.061
  97. Suriani, N. W., Lawalata, H. J., & Komansilan, A. (2014). Urea crystallization on the concentrate making of omega-3 fatty acid from oil of tuna fish (Thunnus sp.) canning byproduct. International Journal of PharmTech Research, 6(7), 1981-1990.
  98. Tanbirul Haque, A. S. M., & Chun, B.-S. (2015). Particle formation and characterization of mackerel reaction oil by gas saturated solution process. Journal of Food Science and Technology. https://doi.org/10.1007/s13197-015-2000-3
  99. Taylor, L. T. (2009). Supercritical fluid chromatography for the 21st century. Journal of Supercritical Fluids, 47(3), 566-573. https://doi.org/10.1016/j.supflu.2008.09.012
  100. Tengku, M., & Birch, E. J. (2013). Enrichment of omega-3 fatty acids of refined hoki il. J Am Oil Chem Soc, (90), 1111-1119. https://doi.org/10.1007/s11746-013-2260-x
  101. Turchini, G. M., Gunasekera, R. M., & De Silva, S. S. (2003). Effect of crude oil extracts from trout offal as a replacement for fish oil in the diets of the Australian native fish Murray cod Maccullochella peelii peelii. Aquaculture Research, 34(9), 697-708. https://doi.org/10.1046/j.1365-2109.2003.00870.x
  102. Vaisali, C., Charanyaa, S., Belur, P. D., & Regupathi, I. (2015). Refining of edible oils: a critical appraisal of current and potential technologies. International Journal of Food Science & Technology, 50(1), 13-23. https://doi.org/10.1111/ijfs.12657
  103. Valenzuela, A., Sanhueza, J., & De la Barra, F. (2012). El aceite de pescado: Ayer un desecho industrial, hoy un producto de alto valor nutricional. Revista Chilena de Nutrición, 39(2), 201-209. https://doi.org/10.4067/S0717-75182012000200009
  104. Valverde, L. M., Moreno, P. A. G., Cerdán, L. E., López, E. N., López, B. C., & Medina, A. R. (2014). Concentration of docosahexaenoic and eicosapentaenoic acids by enzymatic alcoholysis with different acyl-acceptors. Biochemical Engineering Journal, 91, 163-173. Retrieved from https://doi.org/10.1016/j.bej.2014.08.010
  105. Vázquez, J. A., Nogueira, M., Durán, A., Prieto, M. A., Rial, D., González, M. P., & Murado, M. A. (2011). Preparation of marine silage of swordfish, ray and shark visceral waste by lactic acid bacteria. Journal of Food Composition and Analysis, 103, 442-448. https://doi.org/10.1016/j.jfoodeng.2010.11.014
  106. Vázquez, L., & Akoh, C. C. (2012). Enrichment of stearidonic acid in modified soybean oil by low temperature crystallisation. JAOCS, Journal of the American Oil Chemists' Society, 89(11), 1999-2010. https://doi.org/10.1016/j.foodchem.2011.07.022
  107. Vidotti, R. M., Pacheco, M. T. B., & Gonçalves, G. S. (2011). Characterization of the oils present in acid and fermented silages produced from tilapia filleting residue. Revista Brasileira de Zootecnia, 40, 240-244. https://doi.org/10.1590/S1516-35982011000200002
  108. Wang, W., Li, T., Ning, Z., Wang, Y., Yang, B., Ma, Y., & Yang, X. (2012). A process for the synthesis of PUFA-enriched triglycerides from high-acid crude fish oil. Journal of Food Engineering, 109(3), 366-371. https://doi.org/10.1016/j.jfoodeng.2011.11.020
  109. Wu, T. H., & Bechtel, P. J. (2008). Salmon by-product storage and oil extraction. Food Chemistry, 111, 868-871. https://doi.org/10.1016/j.foodchem.2008.04.064

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

2146 | 2589 | 718




 

Creative Commons License

La Revista proporciona acceso abierto y libre a todos sus contenidos; sin barreras legales, económicas o tecnológicas, para lo cual define la siguiente licencia de publicación y uso de los artículos: Licencia de publicación: Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) Texto completo:https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es