Industrial use of whey in the production of a yogurt-type fermented milk drink with Aloe vera L. (Asphodelaceae) crystals and Passiflora ligularis Juss. (Passifloraceae)

Katherine Gutiérrez Álzate, Luis Alfonso Beltrán Cotta, Clemente Granados Conde

Industrial use of whey in the production of a yogurt-type fermented milk drink with Aloe vera L. (Asphodelaceae) crystals and Passiflora ligularis Juss. (Passifloraceae)

Ciencia y Tecnología Agropecuaria, vol. 22, no. 2, 2021

Corporación Colombiana de Investigación Agropecuaria

Katherine Gutiérrez Álzate

Universidad de Cartagena, Colombia


Luis Alfonso Beltrán Cotta

Universidad de Cartagena, Colombia


Clemente Granados Conde

Universidad de Cartagena, Colombia


Received: 06 may 2019

Accepted: 09 october 2020

Published: 28 may 2021

Abstract: Currently, the food industry searches for innovation and the use of natural and more economical resources. With this in mind, the industrial application of whey was used to elaborate a yogurt-type fermented milk drink with Aloe vera L. crystals (Asphodelaceae) and Passiflora ligularis Juss. (Passifloraceae). For this purpose, A. vera crystals and granadilla or passionfruit pulp, were extracted and added to the four formulations established. Physicochemical, bromatological, microbiological, and sensory analyses (hedonic test) were carried out. The formulations with the highest content of A. vera (F4) and granadilla (F2) showed the best results in bromatological, microbiological, and sensory properties. The A. vera crystals and the granadilla pulp are of great industrial value due to the improvement that their addition gave to the physicochemical, bromatological, microbiological, and sensory properties of the yogurt-type fermented milk drink.

Keywords: microbiological properties, pasteurization, sensory evaluation, storage, temperature.

Resumen: Actualmente, la industria alimentaria busca la innovación y el aprovechamiento de recursos naturales que sean más económicos. Pensando en ello, este trabajo tuvo como finalidad el aprovechamiento industrial del lactosuero mediante la elaboración de una bebida láctea fermentada tipo yogur con cristales de Aloe vera L. (Asphodelaceae) y Passiflora ligularis Juss. (Passifloraceae). Para esto, se extrajeron cristales de A. vera y pulpa de granadilla, y se adicionaron a las cuatro formulaciones establecidas. Se realizaron análisis fisicoquímicos, bromatológicos, microbiológicos y sensoriales (prueba hedónica). Las formulaciones que tuvieron mayor contenido de A. vera (F4) y granadilla (F2) presentaron los mejores resultados en las propiedades bromatológicas, microbiológicas y sensoriales. Se estableció que los cristales de A. vera y la pulpa de granadilla pueden ser de gran valor industrial, dado que su adición mejoró las propiedades fisicoquímicas, bromatológicas, microbiológicas y sensoriales de la bebida láctea fermentada tipo yogur.

Palabras clave: almacenamiento, evaluación sensorial, pasteurización, propiedades microbiológicas, temperatura.

Introduction

The production of dairy beverages obtained through the fermentation of whey or lacto-serum has grown significantly worldwide due to the simplicity of its process and, above all, to its excellent consumer acceptance (Boynton & Novakovic, 2014; Janiaski et al., 2016). Whey is a by-product generally obtained in artisanal cheese industries considered a low-value raw material, frequently discarded in water sources or sewers, causing serious pollution problems. Despite possessing lactose in significant quantities as structural carbohydrates that allow the growth and multiplication of lactic acid bacteria, it is mostly used for animal feed (Arce-Méndez et al., 2016; Miranda et al., 2014). Producer ignorance about the nutritional properties of whey and the lack of resources to access adequate technologies for its management and processing leads to the loss of this by-product (Mazorra-Manzano et al., 2019; Poveda, 2013).

In the food industry, Aloe vera L. (Asphodelaceae) and its derivatives (e.i., gel), have several applications due to its wide variety of nutritional properties. Therefore, it has been used as a food supplement in juices, drinks, capsules, and gels, and it is consumed fresh or as an ingredient in culinary preparations (salads and pastry products) due to its content of vitamins and minerals. Thus, it is considered a raw material or main ingredient in the preparation of functional foods (Acevedo et al., 2017; Bonilla & Jiménez, 2016; Sánchez & Caballero, 2020). The by-products of this plant are usually extracted through heating, dehydration, or grinding processes, which can irreversibly affect the bioactive components, including polysaccharides and antioxidant compounds, producing changes in the biochemical properties of the product (Serván, 2018; Villa-Uvidia et al., 2020).

The Passiflora L. genus that belongs to the family Passifloraceae has different species with industrial interest. Granadilla (Passiflora ligularis Juss.), after yellow passion fruit (P. edulis f. flavicarpa Degener), occupies the second place in economic importance due to its participation in national and international markets. It is a fruit that contains multiple seeds surrounded by a sweet aril with great organoleptic attributes that is mostly consumed as fresh fruit (Arias et al., 2016; Gaona-Gonzaga et al., 2020). It is produced mainly in Colombia with a national production in 2018 of 47,458.04 tons, being Huila the main producer department with 23,674.55 tons, followed by Nariño, Cundinamarca and Antioquia, according to the statistics reported by Agronet (2020).

In general, the information obtained allowed establishing a study in which lactose, being of great importance for the industrial sector, could be used as it allows the utilization of this by-product that is typically discarded. This generates, in turn, significant damage to the environment. However, whey can be used together with A. vera crystals, implementing techniques that utilize nutrients from this plant, and those provided by granadilla. This allows obtaining a yogurt-type fermented milk drink with adequate physicochemical, microbiological, bromatological, and sensory parameters for this type of product. For this reason, the aim of this work was to make industrial use of whey in the elaboration of a yogurt-type fermented milk drink with A. vera crystals and P. ligularis pulp.

Materials and methods

Raw material and extraction of Aloe vera crystals and granadilla pulp

Sweet whey was used to make the yogurt-type fermented milk drink obtained from a local cheese company, while the rest of the material was obtained from the local market in the city of Cartagena de Indias (Colombia).

Aloe vera leaves (from 2 or 3-year-old plants) were immersed in a sodium hypochlorite solution and left for 3-5 min to remove any remaining dirt. Then, the aloin content was removed, leaving the leaves in water for 24 h. After this time, the epidermis was removed, and the pulp was cut into cubes of 1.5 ×1.5 × 1.5 cm obtaining what is known in the region as “Aloe vera crystals”.

The granadilla fruits in maturity states 7 and 8, and similar sizes, were washed in the same way as the A. vera leaves. Then, these were scalded in water at 100 °C for 5 min. Subsequently, they were taken to a pulping machine (CI TALSA D1000) to extract the pulp that was not pasteurized.

Formulation and production of a yogurt-type fermented milk drink

The drink formulations assessed can be seen in table 1. The percentages were based on % w/v in relation to sweet whey.

Table 1.
Yogurt-type fermented milk drink formulations (F) assessed
Yogurt-type fermented milk drink formulations (F) assessed


Source: Elaborated by the authors

Sweet whey was pasteurized at a temperature of 62 ± 0.5 °C for 30 min. Subsequently, sugar and semi- skimmed milk powder were added until a homogeneous solution was obtained. To the resulting product, the lactic culture (Lactobacillus bulgaricus and Streptococcus thermophilus) attained from a mother culture, was added. The fermentation process took place for 210 min (3.5 h) at 44.5 ± 1.0 °C. The percentages of A. vera crystals and granadilla pulp according to the formulations established (table 1) were added once this process was finished.

Physicochemical and bromatological evaluations

The analyses were made according to the Association of Official Agricultural Chemists (AOAC,1990) as follows: pH (943.02), percentage of titratable acidity (942.15), protein (979.09), moisture (927.05), ash (923.03), fat (920.39), carbohydrates (by difference), Na (985.35), Mg (985.35), K (985.35), Fe (944.02), Ca (944.03), and vitamin C (2,6-dichloroindophenol titrimetric method). Further, 2,2- diphenyl-1-picrylhydrazyl (DPPH) was established according to Repo and Encina (2008).

Microbiological analysis

The microbiological analyses performed on the finished product according to the Colombian Technical Standard 805 (Instituto Colombiano de Normas Técnicas y Certificación [Icontec], 2005) were the following: Total coliforms (Icontec, 2007), and molds and yeasts (Icontec, 1997).

Sensory analysis

A 5-point hedonic test was chosen to determine the sensory acceptability of the four samples or formulations, ranging from "I really dislike it" with a score of 1, to "I really like it" with a score of 5. Fifty persons of both genders between 20 and 30 years of age were chosen to perform this test. The parameters to be evaluated were color, smell, viscosity, acidity, and general acceptability.

Storage behavior

The methodology proposed by Parra (2013) was used for this test with some modifications. Once the sample with the best consumer acceptance was chosen, pH (943.02) and titratable acidity (942.15) tests were performed using the AOAC (1990) methods for 21 days at 4 °C. Measurements were made every seven days in triplicate. In this way, the useful life of the yogurt that obtained the best consumer preference was established.

Statistical analysis

The obtained data were analyzed using standard analysis of variance (ANOVA), and its statistical significance was established utilizing Tukey's test with a confidence level of 95 %, employing the statistics Statgraphic Centurion XVI.I. program. All tests were performed in triplicate.

Results and discussion

Physicochemical properties

The pH behavior during the fermentation process of the yogurt-type fermented milk drink can be seen in figure 1, showing a linear decrease over 210 min. The milk drink recorded a pH value of 7.26 in its initial stage, decreasing its pH slowly during the fermentation process at a temperature of 44.5 ± 1 °C until reaching a pH value of 5.47 at the end of the fermentation period. In this process, the pH did not change abruptly, since the temperature was maintained between the optimal range indicated for this product in other studies for an adequate microorganism development (Adamberg et al., 2003; Hoyos et al., 2010). The pH-decrease phenomenon is due to the lactose fermentation action of lactic acid bacteria (LAB) found in yogurt (L. bulgaricus and S. thermophilus). These act on existing carbohydrates and the production of lactic acid activity that was generated in the fermentation process, whose bacteria can produce acids that eventually increase the H+ concentration in the culture (Østlie et al., 2003; Vahedi et al., 2008; Widyastuti & Febrisiantosa, 2014; Zapata et al., 2015).

Variation in pH and percentage of titratable acidity during the fermentation process
Figure 1.
Variation in pH and percentage of titratable acidity during the fermentation process


Source: Elaborated by the authors

The increase in the percentage of titratable acidity expressed as the percentage of lactic acid during the fermentation process can be seen in figure 1. The percentage of acidity observed at the end of the fermentation was 0.765, indicating that the lactic acid levels are within the ranges established by the Colombian Technical Standard 805, which stipulates that the minimum percentage of acidity must be 0.60 for dairy products. The results obtained showed the growth of the acidity percentage from 0.45 % at the beginning of fermentation, to 0.765 % at 210 min, finishing at this point, the bacterial incubation phase. This last value is higher than the result obtained by Miranda et al. (2014); these authors elaborated a fermented drink from whey incorporating L. acidophilus and S. thermophilus with a titratable acidity of 0.63 %, and establishing that the content of nutrients and proteins in whey can generate the good behavior of lactic bacteria.

Bromatological properties

The bromatological properties of the four formulations of the yogurt-type fermented milk drink assessed are shown in table 2. Aloe vera and granadilla influenced the parameters evaluated due to the statistical differences (p < 0.05) found between the samples.

Table 2.
Bromatological properties of the four formulations (F) of the yogurt-type fermented milk drink
Bromatological properties of the four formulations (F) of the yogurt-type fermented milk drink

DPPH: 2,2-diphenyl-1-picrylhydrazyl.


Note.Similar letters in the same row indicate a statistically significant difference, according to Tukey's test (p < 0.05); n = 3; average ± standard deviation


Source: Elaborated by the authors

The F2 sample obtained statistically significant differences (p < 0.05) and higher protein percentage, contents of vitamin C, Ca, Fe, and antioxidant capacity (DPPH) compared to the other samples. This is because F2 had the highest percentage of granadilla (12.5 %), and this fruit is rich in macro and micronutrients; moreover, A. vera crystals also possess vitamin C and antioxidants (Cabrera et al., 2014; Carvajal et al., 2014; López et al., 2006; Vega-Gálvez et al., 2011). Sample F4 showed the statistically highest values (p < 0.05) for K, Mg, and Na with respect to the other treatments or formulations. These high percentages are because this sample had the highest percentage of A. vera crystals (12.5 %), providing these minerals to the product (Miranda et al., 2009; Vega et al., 2005; Zhang et al., 2018).

Concerning the moisture content, F1 showed the highest value. Meanwhile, regarding ash content, samples F2, F3, and F4 showed a statistically significant difference (p < 0.05) compared to F1, due to the percentages of ash that granadilla and A. vera have (Carvajal et al., 2014; Miranda et al., 2009). In relation to the percentages of carbohydrates and fat, no statistical differences were found (p > 0.05); these results are, however, similar to those reported by other authors (Miranda et al., 2014; Tirado et al., 2015).

Microbiological properties

The results of the microbiological evaluation carried out are shown in figure 2. The elaborated fermented milk drink complied with the microbiological requirements established in the Colombian Technical Standard 805, since according to the mold and yeast tests (limit of 500 CFU/mL), the samples showed values below the allowed limit. Likewise, for the total coliform tests (limit of 100 CFU/mL), these were within the allowed limit. The samples with higher A. vera content (F2, F3, and F4) had less contamination than the control sample (figure 2); according to Shaaban et al. (2010), this may be due to the antimicrobial properties of A. vera.

Microbiological properties of the four formulations of the yogurt-type fermented milk drink
Figure 2.
Microbiological properties of the four formulations of the yogurt-type fermented milk drink


Source: Elaborated by the authors

The yogurt-type fermented milk drink showed a low quantity of total coliforms, indicating the adequate hygienic quality with which they were elaborated, similar to the results in the coliforms count reported by Mukhekar et al. (2018) in the elaboration of a yogurt product enriched with A. vera.

Sensory properties

The results of the sensory analysis are shown in table 3. F4 obtained the best score in all parameters because it only had statistically significant differences (p < 0.05) over the other samples in smell, acidity, and general acceptability. Concerning color, there were statistically significant differences (p < 0.05) between the white sample (F1) and the rest. Furthermore, no statistically significant differences (p > 0.05) were found in viscosity.

Table 3
Sensory properties of the samples of the four formulations (F) of the yogurt-type fermented milk drink
Sensory properties of the samples of the four formulations (F) of the yogurt-type fermented milk drink

Nota.Similar letters in the same column symbolize a statistically significant difference, according to Tukey's test (p < 0.05); n = 50; average ± standard deviation.


Source: Elaborated by the authors

When there is a higher A. vera content, the assessment of the panelists was also higher. This coincides with Parra (2014), who indicated that A. vera provides sensory features that yogurt does not possess.

Behavior during storage

The behavior of pH and titratable acidity during storage is shown in figure 3. There was a slow linear decrease in pH, starting from 5.47 and 5.36, and ending with 5.17 and 5.12 during storage for the F1 and F4 formulations, respectively. These results were superior to those reported by Marulanda et al. (2016) and Ruiz and Ramírez (2009). Several authors consider that the acidification during storage may be due to the residual enzymes produced by the initiators during fermentation, remaining active at temperatures between 0-5 °C (Kailasapathy, 2006; Vahedi et al., 2008).

Variation in pH and percentage of acidity during the storage of the four formulations of the yogurt-type fermented milk drink.
Figure 3.
Variation in pH and percentage of acidity during the storage of the four formulations of the yogurt-type fermented milk drink.


Source: Elaborated by the authors

On the contrary, the percentage of acidity showed a linear increase, presenting an initial percentage of lactic acid of 0.765 to 0.864 for F1, and 0.777 to 0.881 for F4, values similar to those found by Londoño et al. (2008) and Londoño et al. (2017), who produced drinks fermented from whey with probiotics, obtaining a percentage of acidity of 0.90 at day 21. The A. vera crystals influenced pH and acidity, since the polysaccharides present in this species had a stimulant effect on the metabolic activity of the microorganisms (Wijesundara & Adikari, 2017; Yadav et al., 2007).

The acidity did not exceed the maximum stipulated in Colombia by Resolution 2310 (1986), which indicates that the maximum percentage of acidity that a fermented milk drink must have is 1.50. At the same time, for pH, there are no regulations in force in Colombia that stipulate a maximum value for this parameter. Therefore, the yogurt-type fermented milk drink had a useful life of more than 21 days at 4 °C.

Conclusions

According to the results obtained, the use of sweet whey, Aloe vera, and granadilla (Passiflora ligularis) as main ingredients in different elaborated products, can be of great industrial value due to the favorability imparted by the different properties that were evaluated in the yogurt-type fermented milk drink elaborated. Regarding the bromatological properties, the F2 and F4 samples showed the best values. The F4 sample obtained the best results in terms of microbiological and sensory properties, also exhibiting good behavior under storage. As shown in all parameters evaluated, F4 (12.5 % of A. vera crystals and 5.5 % of granadilla pulp) was considered the best sample among the ones assessed.

Disclaimers

All the authors made significant contributions to the document and agree to its publication; further, all authors state no conflicts of interest in this study.

Acknowledgments

The authors express their gratitude to Universidad de Cartagena for its support in carrying out this research.

References

Acevedo, D., Montero, P., Atencio, M., Álvarez, M., & Rodríguez, J. (2017). Elaboración de un producto cárnico tipo salchicha con incorporación de harina de garbanzo y gel de Aloe vera. @limentech, Ciencia y Tecnología Alimentaria, 15(1), 5-16. https://doi.org/10.24054/16927125.v1.n1.2017.2947

Adamberg, K., Kask, S., Laht, T. M., & Paalme, T. (2003). The effect of temperature and pH on the growth of lactic acid bacteria: a pH-auxostat study. International Journal of Food Microbiology, 85(1- 2), 171-183. https://doi.org/10.1016/s0168-1605(02)00537-8

Agronet. (2020). Reporte: área, producción y rendimiendo nacional por cultivo. Granadilla. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1

Arce-Méndez, J. R., Thompson-Vicente, E., & Calderón-Villaplana, S. (2016). Incorporación de la proteína del suero lácteo en un queso fresco. Agronomía Mesoamericana, 27(1), 61-71. https://doi.org/10.15517/AM.V27I1.21878

Arias, J., Ocampo, J., & Urrea, R. (2016). Sistemas de polinización en granadilla (Passiflora ligularis Juss.) como base para estudios genéticos y de conservación. Acta Agronómica, 65(2), 197-203. https://doi.org/10.15446/acag.v65n2.49278

Association of Official Agricultural Chemists [AOAC]. (1990). Official methods of analysis of the AOAC(15th ed.).

Bonilla, M. J., & Jiménez, L. G. (2016). Potencial industrial del Aloe vera. Revista Cubana de Farmacia, 50(1). 139-150. http://www.revfarmacia.sld.cu/index.php/far/article/view/13/14

Boynton, R. D., & Novakovic, A. M. (2014). Industry evaluations of the status and prospects for the burgeoning New York Greek-style yogurt industry. Cornell University. https://hdl.handle.net/1813/65488

Cabrera, S. A., Sandoval, A. P., & Forero, F. (2014). Potencial antioxidante y antimicrobiano de extractos acuosos e hidroalcohólicos de granadilla (Passiflora ligularis). Acta Agronómica, 63(3), 1- 11. https://doi.org/10.15446/acag.v63n3.41976

Carvajal, L. M., Turbay, S., Álvarez, L. M., Rodríguez, A., Álvarez, J. M., Bonilla, K., Restrepo, S., & Parra, M. (2014). Relación entre los usos populares de la granadilla (Passiflora ligularis Juss) y su composición fitoquímica. Biotecnología en el Sector Agropecuario y Agroindustrial, 12(2), 185-196. https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/335

Gaona-Gonzaga, P., Vásquez-Rojas, L., Aguayo-Pacas, S., Viera-Arroyo, W., Viteri-Díaz, P., Sotomayor-Correa, A., Medina-Rivera, L., Mejía-Bonilla, P., & Cartagena-Ayala, Y. (2020). Respuesta del cultivo de granadilla (Passiflora ligularis Juss) cultivar “Colombiana” al suministro de nitrógeno y potasio por fertirriego. Manglar, 17(1), 75-82. http://dx.doi.org/10.17268/manglar.2020.012

Hoyos, J. L., Agudelo, C., & Ortega, R. (2010). Determinación de parámetros cinéticos de dos inóculos lácticos: Lactobacillus plantarum A6 y bacterias ácido lácticas de yogurt. Biotecnología en el Sector Agropecuario y Agroindustrial, 8(2), 8-16. https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/743

Instituto Colombiano de Normas Técnicas y Certificación [Icontec]. (1997). Norma Técnica Colombiana 4132. Guía general para el recuento de mohos y levaduras. Técnica de recuento de colonias a 25 ºC.

Instituto Colombiano de Normas Técnicas y Certificación [Icontec]. (2005). Norma Técnica Colombiana 805. Productos lácteos – Leches fermentadas.

Instituto Colombiano de Normas Técnicas y Certificación [Icontec]. (2007). Norma Técnica Colombiana 4458. Método para el recuento de coliformes y Escherichia coli.

Janiaski, D. R., Pimentel, T. C., Cruz, A. G., & Prudencio, S. H. (2016). Strawberry-flavored yogurts and whey beverages: what is the sensory profile of the ideal product? Journal of Dairy Science, 99(7), 5273-5283. https://doi.org/10.3168/jds.2015-10097

Kailasapathy, K. (2006). Survival of free and encapsulated probiotic bacteria and their effect on the sensory properties of yoghurt. LWT - Food Science and Technology, 39(10), 1221-1227. https://doi.org/10.1016/j.lwt.2005.07.013

Londoño, M. M., Sepúlveda, J. U., & Hernández, A. (2017). Utilización del suero de queso fresco en la elaboración de bebida fermentada con cultivos probióticos. Ciencia y Tecnología de Alimentos, 20(2), 53-57.

Londoño, M. M., Sepúlveda, J. U., Hernández, A., & Parra, J. E. (2008). Bebida fermentada de suero de queso fresco inoculada con Lactobacillus casei. Revista Facultad Nacional de Agronomía Medellín, 61(1), 4409-4421. https://revistas.unal.edu.co/index.php/refame/article/view/24741

López, M., Beltrán, M., Cardona, J., & Yepes, H. (2006). La fruta de la pasión, potencial contribución de la naturaleza a la seguridad alimentaria. Investigaciones Andina, 8(12), 57-66. https://doi.org/10.33132/01248146.183

Marulanda, M., Granados, C., & García-Zapateiro, L. A. (2016). Análisis sensorial y estimación fisicoquímica de vida útil de una bebida tipo yogur a base de lactosuero dulce fermentada con Estreptococcus salivarius ssp. Thermophilus . Lactobacillus casei ssp. casei. Producción + Limpia, 11(1), 94-102. https://doi.org/10.22507/pml.v11n1a9

Mazorra-Manzano, M. Á., Ramírez-Montejo, H., Lugo-Sánchez, M. E., González-Córdova, A. F., & Vallejo-Córdoba, B. (2019). Characterization of whey and whey cheese requesón from the production of asadero cheese (cooked cheese) Sonoran region. Nova Scientia, 11(23), 220-233. https://doi.org/10.21640/ns.v11i23.2072

Miranda, M., Maureira, H., Rodríguez, K., & Vega-Gálvez, A. (2009). Influence of temperature on the drying kinetics, physicochemical properties, and antioxidant capacity of Aloe vera .Aloe barbadensis Miller) gel. Journal of Food Engineering, 91(2), 297-304. https://doi.org/10.1016/j.jfoodeng.2008.09.007

Miranda, O. M., Fonseca, P. L., Ponce, I., Cedeño, C., Rivero, L. S., & Vázquez, L. M. (2014). Elaboración de una bebida fermentada a partir del suero de leche que incorpora Lactobacillus acidophilus . Streptococcus thermophilus. Revista Cubana de Alimentación y Nutrición, 24(1), 7-16. https://www.medigraphic.com/pdfs/revcubalnut/can-2014/can141b.pdf

Mukhekar, A., Dasale, R., & Bhosale, S. (2018). Effect on sensory and microbial properties of yogurt fortified with Aloe vera. The Pharma Innovation Journal, 7(10), 146-148. https://www.thepharmajournal.com/archives/2018/vol7issue10/PartC/7-9-58-746.pdf

Østlie, H., Helland, M. H., & Narvhus, J. (2003). Growth and metabolism of selected strains of probiotic bacteria in milk. International Journal of Food Microbiology, 87, 17-27. https://doi.org/10.1016/s0168-1605(03)00044-8

Parra, R. (2013). Efecto del té verde (Camellia sinensis L.) en las características fisicoquímicas, microbiológicas, proximales y sensoriales de yogurt durante el almacenamiento bajo refrigeración. @limentech, Ciencia y Tecnología Alimentaria, 11(1), 56-64. https://doi.org/10.24054/16927125.v1.n1.2013.383

Parra, R. A. (2014). Encapsulación de sábila (Aloe vera) y su efecto durante la incubación de yogur. Cultura Científica, 12, 66-73. https://www.jdc.edu.co/revistas/index.php/Cult_cient/article/view/154

Poveda, E. (2013). Suero lácteo, generalidades y potencial uso como fuente de calcio de alta biodisponibilidad. Revista Chilena de Nutrición, 40(4), 397-403. https://doi.org/10.4067/S0717-75182013000400011

Repo, R., & Encina, C. (2008). Determinación de la capacidad antioxidante y compuestos bioactivos de frutas nativas peruanas. Revista de la Sociedad Química del Perú, 74(2), 108-124.

Resolución 2310. (1986). “Por la cual se reglamenta parcialmente el Título V de la Ley 09 de 1979, en lo referente a procesamiento, composición, requisitos, transporte y comercialización de los derivados lácteos”. Ministerio de Salud de Colombia.

Ruiz, J. A., & Ramírez, A. O. (2009). Elaboración de yogurt con probióticos (Bifidobacterium spp. Y Lactobacillus acidophilus) e inulina. Revista de la Facultad de Agronomía, 26(2), 223-242. https://produccioncientificaluz.org/index.php/agronomia/article/view/26806

Sánchez, M. A., & Caballero, L. A. (2020). Uso de cristales de aloe vera (Aloe barbadensis Miller) en la elaboración de un relleno líquido para bombom de chocolate. @limentech, 17(2), 80-93. https://doi.org/10.24054/16927125.v1.n1.2019.3886

Serván, M. A. (2018). Interés farmacéutico de los mucílagos [Undergraduate thesis, Depósito de Investigación Universidad de Sevilla]. Universidad de Sevilla. https://hdl.handle.net/11441/82306

Shaaban, M., Fattah, A. E., Sree, A., Hassan, Y., Bayoum, H. M., & Eissa, H. A. (2010). The use of lemongrass extracts as antimicrobial and food additive potential in yoghurt. Journal of American Science, 6(11), 582-594. http://www.jofamericanscience.org/journals/am-sci/am0611/91_3965am0611_582_594.pdf

Tirado, D. F., Granados, C., Acevedo, D., Marulanda, M., & De la Hoz, E. (2015). Elaboración de una bebida láctea a base de lactosuero fermentado usando Streptococcus salivarius ssp., Thermophilus . Lactobacillus casei ssp. casei. @limentech, 13(1), 13-19. https://doi.org/10.24054/16927125.v1.n1.2015.1612

Vahedi, N., Tehrani, M. M., & Shahidi, F. (2008). Optimizing of fruit yoghurt formulation and evaluating its quality during storage. American-Eurasian Journal of Agricultural and Environmental Sciences, 3(6), 922-927. https://www.idosi.org/aejaes/jaes3(6)/20.pdf

Vega, A., Ampuero, N., Díaz, L., & Lemus, R. (2005). El aloe vera (Aloe barbadensis Miller) como componente de alimentos funcionales. Revista Chilena de Nutrición, 32(3), 208-214. http://dx.doi.org/10.4067/S0717-75182005000300005

Vega-Gálvez, A., Miranda, M., Aranda, M., Henriquez, K., Vergara, J., Tabilo-Munizaga, G., & Pérez- Won, M. (2011). Effect of high hydrostatic pressure on functional properties and quality characteristics of aloe vera gel (Aloe barbadensis Miller). Food Chemistry, 129(3), 1060-1065. https://doi.org/10.1016/j.foodchem.2011.05.074

Villa-Uvidia, D. N., Osorio-Rivera, M. A., & Villacis-Venegas, N. Y. (2020). Extracción, propiedades y beneficios de los mucílagos. Dominio de las Ciencias, 6(2), 503-524. https://dominiodelasciencias.com/ojs/index.php/es/article/view/1181

Widyastuti, Y., & Febrisiantosa, A. (2014). The role of lactic acid bacteria in milk fermentation. Food and Nutrition Sciences, 5(4), 435-442. https://doi.org/10.4236/fns.2014.54051

Wijesundara, W., & Adikari, A. (2017). Development of aloe vera (Aloe barbadensis Miller) incorporated drinking yoghurt. International Journal of Scientific and Research Publications, 7(11), 334-342. http://www.ijsrp.org/research-paper-1117/ijsrp-p7143.pdf

Yadav, H., Jain, S., & Sinha, P. R. (2007). Evaluation of changes during storage of probiotic dahi at 7 °C. International Journal of Dairy Technology, 60(3), 205-210. https://doi.org/10.1111/j.1471-0307.2007.00325.x

Zapata, I. C., Sepúlveda-Valencia, U., & Rojano, B. A. (2015). Efecto del tiempo de almacenamiento sobre las propiedades fisicoquímicas, probióticas y antioxidantes de yogurt saborizado con mortiño (Vaccinium meridionale Sw). Información Tecnológica, 26(2), 17-28. http://dx.doi.org/10.4067/S0718-07642015000200004

Zhang, Y., Bao, Z., Ye, X., Xie, Z., He, K., Mergens, B., Li, W., Yatcilla, M., & Zheng, Q. (2018). Chemical investigation of major constituents in Aloe vera leaves and several commercial aloe juice powders. Journal of AOAC International, 101(6), 1741-1751. https://doi.org/10.5740/jaoacint.18-0122

Author notes

* Corresponding author: Universidad de Cartagena. Cartagena de Indias, Colombia. Av. Consulado Calle 30 No.48-152. katherinega@ufba.br; cgutierrezalzate@gmail.com

Additional information

Subject editor:: Sebastián Escobar Parra (Corporación Colombiana de Investigación Agropecuaria [AGROSAVIA])

How to cite this article:: Gutiérrez-Álzate, K., Beltrán-Cotta, L. A., & Granados-Conde, C. (2021). Industrial use of whey in the production of a yogurt-type fermented milk drink with Aloe vera L. (Asphodelaceae) crystals and Passiflora ligularis Juss. (Passifloraceae). Ciencia y Tecnología Agropecuaria, 22(2), e1489. https://doi.org/10.21930/rcta.vol22_num2_art:1489

Secciones
Cómo citar
APA
ISO 690-2
Harvard
Ciencia y Tecnología Agropecuaria
Industrial use of whey in the production of a yogurt-type fermented milk drink with Aloe vera L. (Asphodelaceae) crystals and Passiflora ligularis Juss. (Passifloraceae)
issn: 0122-8706 - 2500-5308
DOI: 449970432029
Vol: 22
Numero: 2
Año: 2021
Corporación Colombiana de Investigación Agropecuaria

Katherine Gutiérrez Álzate

Universidad de Cartagena, Colombia


Luis Alfonso Beltrán Cotta

Universidad de Cartagena, Colombia


Clemente Granados Conde

Universidad de Cartagena, Colombia


Contexto
Descargar
Todas