Rooting young stem cuttings of Solanum tuberosum L. var. yungay using 2,4-dichlorophenoxyacetic acid

Katty Aracely Gonza-Carnero, Segundo Eloy López-Medina, Armando Efraín Gil-Rivero, José Mostacero-León, Angélica López-Zavaleta, Anthony J. De La Cruz-Castillo, Luigi Villena Zapata

Rooting young stem cuttings of Solanum tuberosum L. var. yungay using 2,4-dichlorophenoxyacetic acid

Ciencia y Tecnología Agropecuaria, vol. 21, no. 3, 2020

Corporación Colombiana de Investigación Agropecuaria

Katty Aracely Gonza-Carnero

Universidad Nacional de Trujillo, Perú


Segundo Eloy López-Medina

Universidad Nacional de Trujillo, Perú


Armando Efraín Gil-Rivero *

Universidad Nacional de Trujillo, Perú


José Mostacero-León

Universidad Nacional de Trujillo, Perú


Angélica López-Zavaleta

Universidad Nacional de Trujillo, Perú


Anthony J. De La Cruz-Castillo

Universidad Nacional de Trujillo, Perú


Luigi Villena Zapata

Universidad César Vallejo, Perú


Received: September 14, 2019

Accepted: June 08, 2020

Published: November 03, 2020

Abstract: For the propagation of Solanum tuberosum, tubers as seeds are the most commonly used method in most agroecological areas. The use of young stem cuttings is an exclusive practice of nurseries and agricultural companies, which employ rooting hormones that are inaccessible to small farmers. Reportedly, synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) at a very low concentration induces the rooting of cuttings and can be an accessible alternative for small-scale agriculture. Given the need for broader knowledge, this research aims to evaluate the rooting effect of 2,4-D in young stem cuttings of S. tuberosum var. yungay. The experimental phase took place in the greenhouse of the Institute for Potato and Andean Crops, Universidad Nacional de Trujillo, Peru, with seedlings from the same Institute. These seedlings became mother plant donors of young stem cuttings, which were sown in a rooting bed with different 2,4-D concentrations. When analyzed statistically, the results obtained show that the 0.3 % concentration caused a higher average in the number of roots (6.52), root length (5.31 cm), and seedling height (2.63 cm). In conclusion, 2,4-D at a 0.3 % concentration produces the better rooting of young stem cuttings of S. tuberosum var. yungay.

Keywords: auxins, cuttings, plant growth substances, potatoes, vegetative propagation.

Resumen: Para la propagación de Solanum tuberosum, los tubérculos son la forma más empleada en la mayoría de las zonas agroecológicas. El empleo de esquejes de tallo juvenil es una práctica exclusiva de viveros y empresas agrícolas que hacen uso de hormonas enraizantes, inaccesibles para los pequeños agricultores por su alto costo. Se ha reportado que la auxina sintética 2,4-diclorofenoxiacético (2,4-D) a muy baja concentración induce al enraizamiento de esquejes y puede ser una alternativa viable para la agricultura a pequeña escala. Ante la necesidad de un mayor conocimiento, se propuso como objetivo de investigación evaluar el efecto enraizante del 2,4-D en esquejes de tallo juvenil de S. tuberosum var. yungay. La fase experimental se desarrolló en el invernadero del Instituto de la Papa y Cultivos Andinos de la Universidad Nacional de Trujillo (Perú), con plántulas procedentes del mismo instituto que se convirtieron en plantas madre donadoras de esquejes de tallo juvenil, los cuales fueron sembrados en cama de enraizamiento con diferentes concentraciones de 2,4-D. El análisis estadístico de los resultados demostró que la concentración de 0,3 % generó un promedio mayor en número de raíces (6,52), longitud de raíces (5,31 cm) y altura de plántula (2,63 cm). Se concluyó que el 2,4-D en concentración del 0,3 % produce un mejor enraizamiento de esquejes de tallo juvenil de S. tuberosum var. yungay.

Palabras clave: auxinas, esquejes, papas, propagación vegetativa, sustancias de crecimiento vegetal.

Introduction

The northern area of Lake Titicaca is one of the centers of origin and diversity of Solanum tuberosum L. In this place, wild species such as Solanum bukasovii Juz. and Solanum bukasovii var. multidissectum (Hawkes) Ochoa gave rise to Solanum stenotomum Juz. et Buk., listed as the first domesticated potato. Solanum stenotomum originated Solanum andigenum Juz. et Buk., which by polyploidization and interspecific hybridization processes resulted in a great diversity of potatoes. Ancient Peruvians were responsible for scattering them across the center, south, and north of Peru. Then, the Spanish colonizers spread them throughout Europe and the world (Centro Internacional de la Papa & Federación Departamental de Comunidades Campesinas, 2006; Gil-Rivero et al., 2019; Gómez et al., 2012; Rodríguez, 2010).

Currently, more than 5,000 varieties of potato are known in Peru, including wild, native, and commercial varieties. Potato is considered the world’s fourth food staple of the human diet due to its nutritional and culinary characteristics (Gómez et al., 2012; Kramm, 2017). In the culinary field, potato can be eaten in various preparations such as soups, mashed potatoes, French fries, dried potatoes, chuño, and tocosh. The last two are the most important ethnomedicinally for the Andean populations due to their content of natural antibiotics (Álvarez, 2001; Centro Internacional de la Papa, Asociación Pataz, & Instituto Nacional de Innovacion Agraria, 2015; Pesantes, 2015).

Solanum tuberosum is propagated vegetatively using cuttings, tubers, and in vitro cultures, and sexually through botanical seeds, which are the most used form because it preserves the agronomic attributes of the species. According to the principle of cell totipotential, plants retain the ability to regenerate and rebuild their tissues until they become once again whole plants with the same genotype (Araújo et al., 2009; Hartmann & Kester, 1995; Rojas et al., 2004). Therefore, farmers use seed tubers to obtain plants identical to the mother plant, although this method allows the transmission of diseases that, together with poor agricultural practices and genetic potential, reduce yields.

This problem resulted in the implementation of new propagation alternatives in production systems, such as in vitro plant tissue cultures. Meristem culture, somatic embryogenesis, and in vitro tuberization are the most common techniques in plant biotechnology since they ensure better genetic and phytosanitary quality of the crop due to a lower viral and bacterial load. Thus, the production and profitability of crops are maximized (Araque et al., 2018; Hernández & Díaz, 2019; Tacoronte et al., 2017).

Propagation by young stem cuttings is useful in pre-basic and basic seed programs. This technique lies in selecting young greenhouse plants that contain between five and six nodes and cutting them at the base of the shoot, leaving a basal leaf with its bud. Then, the apical bud is removed, and portions of the stem are sectioned to obtain cuttings consisting of a leaf and its axillary bud, which will induce rooting when treated with hormones and sown in the sand (Cotes & Ñustez, 2001; Ramírez et al., 2011b).

The rooting of any cutting requires the right hormonal balance of phytohormones or phytoregulators. In agriculture, the most widely used phytohormone is indole-3-butyric acid (IBA), and the most widely used phytoregulator is 1-naphthaleneacetic acid (ANA); these compounds are not affordable for small and medium farmers and agricultural technicians (García et al., 2001; Moreno et al., 2009; Uribe et al., 2012). Although it is known that 2,4-dichlorophenoxyacetic acid (2,4-D) is the most used synthetic auxin herbicide in agriculture to control weeds because it is cheap and easy to buy, it reportedly induces the rooting of cuttings at low concentrations (De la Cruz et al., 2014). Then, the aim of this research is to evaluate the rooting of young stem cuttings of S. tuberosum var. yungay by applying different 2,4-D concentrations.

Materials and methods

We selected Solanum tuberosum var. yungay (Solanaceae) plants with five to six nodes from the Biotechnology Laboratory of the Institute for Potato and Andean Crops, Universidad Nacional de Trujillo, and cultivated them in pots of 10 cm in diameter with a substrate consisting of a mixture of sand, humus, and moss in a 1:1:1 ratio under greenhouse conditions.

Seedbed preparation

In the greenhouse, we prepared a seedbed consisting of two layers of sand: the first, 4 cm thick with coarse sand of 1 cm in diameter at the bottom, and the second, 10 cm thick with fine sand of 0.05 cm in diameter on the top. This substrate was previously disinfected with 2 % sodium hypochlorite for 24 hours and solarization for one week.

Sowing cuttings of Solanum tuberosum var. yungay

When the mother plants were able to acclimatize and had between five and six leaves, young stem cuttings consisting of a shoot and its leaf were sectioned (figure 1). The method was to moisten the basal part of the cuttings with water and then impregnating them with the 2,4-D hormone powder according to the indicated treatments: T1: 0 %; T2: 0.3 %; T3: 0.5 %; and T4: 0.8 %.

Young stem cutting of Solanum tuberosum var. yungay.
Figure 1
Young stem cutting of Solanum tuberosum var. yungay.


Photo: Segundo Eloy López Medina

Finally, the plants were sown in rooting beds at field capacity and watered twice a week with sterile water added with liquid NPK-based fertilizer (12-14-12) at a rate of 5 g/L. The greenhouse was kept at an average temperature of 25 °C ± 2 °C, relative humidity of 80 %, and a photoperiod of 16 hours of light and 8 hours of darkness.

Statistical design

A completely randomized design was used, consisting of 4 treatments, 24 repetitions, and 96 experimental units. Twenty days after sowing, the number of roots, their length, and seedling height were measured. The recorded data were analyzed with the RStudio integrated development environment, version 1.2.5033. The presence of statistically significant differences was evaluated using Welch’s Anova test because no variable met the homoscedasticity, and the Games-Howell post hoc test, with a 5 % significance level, for selecting the best treatment.

Results and discussion

The number of roots, the maximum root length, and the seedling height produced by the different 2,4-D concentrations 20 days after sowing clearly show the action of synthetic auxin, with significant differences between treatments and evaluated parameters (table 1). Ramírez et al. (2011a) have shown that, in Solanaceae, it is necessary to use auxins for the rooting of young cuttings, while in other plant species, they are not essential since water is enough to induce rooting. However, it is crucial to consider that the type of substrate used influences the quality and quantity of roots formed due to more aeration and water retention (López et al., 2008). For their part, Ludwig-Müller and Cohen (2002) reported that auxins regulate plant development, including rooting, since the hormone concentration used is responsible for inducing or inhibiting radical development of future plants.


Table 1

Average values of the variables measured for each treatment.

Note: x̄ ± e: mean estimate



Source: Elaborated by the authors

When 0.3 % 2,4-D was used, better results were obtained in terms of the number of roots, maximum root length, and seedling height (table 1). When analyzing the Games-Howell post hoc test (table 2), we noted that the T2 treatment is the best as it achieved a more significant number of cell divisions that promoted root growth (figure 2). De la Cruz et al. (2014) corroborate this finding by stating that the 0.3 % concentration of 2,4-D exerts a positive effect on the rooting of young cuttings of Rosa canina L. (Rosaceae).


Table 2

Homogeneous subsets obtained from the Games-Howell test for each treatment according to the variables analyzed.

Note: Distinct letters in subsets have a significant difference at 95 % confidence.



Source: Elaborated by the authors

Rooted seedling of S. tuberosum var. yungay obtained from young stem cuttings with 2,4-D application 20 days after sowing.
Figure 2
Rooted seedling of S. tuberosum var. yungay obtained from young stem cuttings with 2,4-D application 20 days after sowing.


Photo: Segundo Eloy López Medina

Moreover, we observed that, when increasing the 2,4-D dose from 0.3 % to 0.5 % and 0.8 %, there was no rise in the number of roots, maximum root length, and seedling height that exceeded the results of the T2 treatment. It can be inferred that a higher 2,4-D concentration causes a hormonal imbalance that ends up inhibiting rooting. Hartmann and Kester (1995) reported that volumes of growth regulators should be optimal to induce rooting. Also, Moreno et al. (2004) argued that by using ANA, good results are obtained in rooting potato cuttings. Ramírez et al. (2011a) reported that the use of ANA at a 0.4 % concentration induces 100 % rooting and survival of cuttings. For their part, López et al. (2016) indicated that IBA at a 0.0001 % concentration has a positive effect on the rooting of cuttings.

As a result of good root development, a more significant increase in the length of the plants was observed (table 1, figure 2). Likewise, the action of auxins, which improves the plasticity of the cell wall, generated a greater deposit of cellulose, which promotes longitudinal growth (Hager, 2003; Henríquez, 2004). Giraldo et al. (2009) reported that the presence of auxins induces the synthesis of gibberellins, which are the hormones responsible for cell elongation.

Conclusions

The use of 2,4-D at a 0.3 % concentration produces the better rooting of young stem cuttings in S. tuberosum var. yungay and is an efficient alternative for the propagation of S. tuberosum by small farmers.

Acknowledgments

Special thanks to the Biotechnology Laboratory of the Institute for Potato and Andean Crops, Universidad Nacional de Trujillo (Peru), for providing us with the resources to carry out this research in its facilities. We also thank Mr. Segundo Eloy López Medina, Ph.D., for allowing us to use the photographs in this article.

Disclaimers

The authors made significant contributions to this document, agree with its publication, and state that there are no conflicts of interest in this study.

References

Álvarez, M. (2001). Oportunidades para el desarrollo de productos de papas nativas en el Perú. Revista Latinoamericana de la Papa, 13(2), 58-79. https://doi.org/10.37066/ralap.v13i2.134

Araque, E., Bohórquez, M., Pacheco, J., Correa, L., Urquijo, J., Castañeda, S., & Pacheco, J. (2018). Propagación y tuberización in vitro de dos variedades de papa. Ciencia en Desarrollo, 9(1), 21-31. https://doi.org/10.19053/01217488.v9.n1.2018.7132

Araújo, J., Guerra, D., Araújo, J., Lopes, S., & Balbinot, E. (2009). Propagação vegetativa de cedo-australiano (Toona ciliata M. Roemer) por miniestaquia. Revista Árvore, 33(2), 205-213. http://dx.doi.org/10.1590/S0100-67622009000200002

Centro Internacional de la Papa & Federación Departamental de Comunidades Campesinas. (2006). Catálogo de variedades de papa nativa de Huancavelica - Perú. Centro Internacional de la Papa. https://bit.ly/2WzRgVl

Centro Internacional de la Papa, Asociación Pataz & Instituto Nacional de Innovacion Agraria. (2015). Catálogo de variedades de papa nativa de Chugay, La Libertad - Perú. Catalog of ancestral potato varieties from Chugay, La Libertad - Peru. Centro Internacional de la Papa. https://hdl.handle.net/10568/69083

Cotes, J., & Ñustez, C. (2001). Evaluación de dos tipos de esquejes en la producción de semilla prebásica de papa criolla (Solanum phureja Juz et. Buck) variedad “yema de huevo”. Agronomía Colombiana, 18(1-2), 7-13. https://bit.ly/39czSek

De la Cruz, J., Mejía, F., Mostacero, J., Lopéz, E., & Gonza, A. (2014). Efecto de la concentración del 2,4-diclorofenoxiacético (2,4-D) en el enraizamiento de estacas de Rosa sp., rosa silvestre, en condiciones de invernadero. Revista INDES, 2(1), 37-43. http://dx.doi.org/10.25127/indes.20142.61

García, D., Jiménez, J., Peña, A., & Rodríguez, J. (2001). Propagación vegetativa de tomate de cáscara (Physalis ixocarpa Brot.) mediante enraizamiento de esquejes. Agricultura Técnica en México, 27(1), 27-33.

Gil-Rivero, E., Lopéz-Medina, E., Mostacero-León, J., & De la Cruz-Castillo, J. (2019). Papas nativas con potencial antioxidante, cultivadas en el norte del Perú. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 18(3), 289-324. https://bit.ly/2ZHYKYE

Giraldo, L., Ríos, H., & Polanco, M. (2009). Efecto de dos enraizadores en tres especies forestales promisorias para la recuperación de suelos. Revista de Investigación Agraria y Ambiental, 1, 41-47. https://doi.org/10.22490/21456453.1966

Gómez, T., López, J., Pineda, R., Galindo, L., Arango, R., & Morales, J. (2012). Caracterización citogenética de cinco genotipos de papa criolla , Solanum phureja (Juz. et Buk.). Revista Facultad Nacional de Agronomía Medellín, 65(1), 6379-6387. https://revistas.unal.edu.co/index.php/refame/article/view/30764

Hager, A. (2003). Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. Journal of Plant Research, 116, 483-505. https://doi.org/10.1007/s10265-003-0110-x

Hartmann, H., & Kester, D. (1995). Propagación de plantas. Principios prácticos. Compañía Editorial Continental.

Henríquez, E. (2004). Evaluación de tres factores de enraizamiento en estacas de morera (Morus alba) [Undergraduate thesis, Universidad de Chile]. Academic repository Universidad de Chile. http://repositorio.uchile.cl/handle/2250/101738

Hernández, A., & Díaz, H. (2019). Inducción in vitro de callo embriogénico a partir del cultivo de anteras en "papa amarilla" Solanum goniocalyx Juz. & Bukasov (Solanaceae). Arnaldoa, 26(1), 277-286. http://dx.doi.org/10.22497/arnaldoa.261. 26111

Kramm, V. (2017). Manual del cultivo de la papa en Chile [Boletín INIA N.º 10]. Instituto de Desarrollo Agropecuario; Instituto de Investigaciones Agropecuarias. https://bit.ly/399fGu0

López, E., Gil, A., & López, A. (2016). Enraizamiento de esquejes de Stevia rebaudiana Bertoni (Asteraceae) “estevia”, aplicando dosis creciente de ácido indolbutírico. Arnaldoa, 23(2), 569-576. https://doi.org/10.22497/arnaldoa.232.23209

López, F., Guío, N., Fischer, G., & Lasprilla, D. (2008). Propagación de uchuva (Physalis peruviana L.) mediante diferentes tipos de esquejes y sustratos. Revista Facultad Nacional de Agronomía Medellín, 61(1), 4347-4357. https://revistas.unal.edu.co/index.php/refame/article/view/24733

Ludwig-Müller, J., & Cohen, J. (2002). Identification and quantification of three active auxins in different tissues of Tropaeolum majus. Physiologia Plantarum, 115(2), 320-329. https://doi.org/10.1034/j.1399-3054.2002.1150220.x

Moreno, N., Álvarez-Herrera, J., Balaguera-López, H., & Fischer, G. (2009). Propagación asexual de uchuva (Physalis peruviana L.) en diferentes sustratos y a distintos niveles de auxina. Agronomía Colombiana, 27(3), 341-348. https://revistas.unal.edu.co/index.php/agrocol/article/view/13277

Moreno, S., Marquinez, X., & Caro, M. (2004). Evaluación de dos tipos de esquejes para producción de tubérculo- semilla élite en cuatro variedades de papa Solanum phureja Juz et Buk y Solanun tuberosum L. Acta Biológica Colombiana, 9(2), 111-112. https://revistas.unal.edu.co/index.php/actabiol/article/view/27380/27644

Pesantes, A. (2015). Efecto antibacteriano in vitro de Solanum tuberosum L. (papa fermentada) en cepas de Escherichia Coli comparado con gentamicina y ceftriaxona [Undergraduate thesis, Universidad Privada Antenor Orrego]. Digital Repository Universidad Privada Antenor Orrego. http://repositorio.upao.edu.pe/handle/upaorep/1562

Ramírez, L., Zuluaga, C., & Cotes, J. (2011a). Evaluación de metodologías de enraizamiento de esquejes de tallo lateral en genotipos de Solanum phureja. Revista Facultad de Ciencias Básicas, 7(2), 192-203. https://doi.org/10.18359/rfcb.2103

Ramírez, L., Zuluaga, C., & Cotes, J. (2011b). Sobrevivencia de esquejes de tallo lateral de genotipos de Solanum phureja. Revista Facultad de Ciencias Básicas, 7(2), 182-191. https://doi.org/10.18359/rfcb.2105

Rodríguez, L. (2010). Origen y evolución de la papa cultivada. Una revisión. Agronomía Colombiana, 28(1), 9-17. https://revistas.unal.edu.co/index.php/agrocol/article/view/17588

Rojas, S., García, J., & Alarcón, M. (2004). Propagación asexual de plantas. Conceptos básicos y experiencias con especies amazónicas. Corporación Colombiana de Investigación Agropecuaria; Ministerio de Agricultura y Desarrollo Rural; Programa Nacional de Transferencia de Tecnología Agropecuaria. http://hdl.handle.net/20.500.12324/17056

Tacoronte, M., Vielma, M., Olivo, A., & Chacín, N. (2017). Efectos de nitratos y sacarosa en la propagación in vitro de tres variedades de papa nativa. Revista Colombiana de Biotecnología, 19(2), 63-73. https://doi.org/10.15446/rev.colomb.biote.v19n2.70160

Uribe, M., Ulloa, J., Delaveau, C., Sáez, K., Muñoz, F., & Cartes, P. (2012). Influencia de las auxinas sobre el enraizamiento in vitro de microtallos de Nothofagus glauca (Phil.) Krasser. Gayana Botanica, 69(1), 105-112. https://doi.org/10.4067/S0717-66432012000100010

Author notes

* Corresponding author: Universidad Nacional de Trujillo. Av. Juan Pablo II, Trujillo 13011, Trujillo, Peru. arivero@unitru.edu.pe

Additional information

Subject editor: Ángela María Castaño Marín (Corporación Colombiana de Investigación Agropecuaria [AGROSAVIA])

How to cite this article: Gonza-Carnero, K. A., López-Medina, S. E., Gil-Rivero, A. E., Mostacero-León, J., López-Zavaleta, A., De la Cruz-Castillo, A. J., & Villena Zapata, L. (2020). Rooting young stem cuttings of Solanum tuberosum L. var. yungay using 2,4-dichlorophenoxyacetic acid. Ciencia y Tecnología Agropecuaria, 21(3), e1604. https://doi.org/10.21930/rcta.vol21_num3_art:1604

Secciones
Cómo citar
APA
ISO 690-2
Harvard
Ciencia y Tecnología Agropecuaria
Rooting young stem cuttings of Solanum tuberosum L. var. yungay using 2,4-dichlorophenoxyacetic acid
issn: 0122-8706 - 2500-5308
DOI: 449963354050
Vol: 21
Numero: 3
Año: 2020
Corporación Colombiana de Investigación Agropecuaria

Katty Aracely Gonza-Carnero

Universidad Nacional de Trujillo, Perú


Segundo Eloy López-Medina

Universidad Nacional de Trujillo, Perú


Armando Efraín Gil-Rivero *

Universidad Nacional de Trujillo, Perú


José Mostacero-León

Universidad Nacional de Trujillo, Perú


Angélica López-Zavaleta

Universidad Nacional de Trujillo, Perú


Anthony J. De La Cruz-Castillo

Universidad Nacional de Trujillo, Perú


Luigi Villena Zapata

Universidad César Vallejo, Perú


Contexto
Descargar
Todas