Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio

Degradación in vitro de Bouteloua repens por cultivos de R. flavefaciens y F. succinogenes aislados de ganado alimentado con pastos tropicales en Colombia

Corporación Colombiana de Investigación Agropecuaria (Agrosavia)
##plugins.generic.jatsParser.article.authorBio##
×

Faisury Ossa

Programa Nacional de Fisiología y Nutrición Animal.

Corporación Colombiana de Investigación Agropecuaria (Agrosavia)
##plugins.generic.jatsParser.article.authorBio##
×

Martha Arcos

Programa Nacional de Fisiología y Nutrición Animal.

 

Corporación Colombiana de Investigación Agropecuaria (Agrosavia)
##plugins.generic.jatsParser.article.authorBio##
×

Tito Díaz

Subdirección de Investigación Estratégica. 

University of California, Davis.
##plugins.generic.jatsParser.article.authorBio##
×

Wolfgang Pittroff

Ruminant System Laboratory.

Complejo enzimático Estudios interespecíficos Inóculos lignocelulosa Aislados nativos

Resumen

Se determinó la capacidad de degradación de la pared celular de Bouteloua repens de 12 aislados de Ruminococcus flavefaciens y 17 de Fibrobacter succinogenes. Se desarrolló un procedimiento para estandarizar la concentración, tanto del inóculo como de los sustratos, de las incubaciones in vitro de cultivos puros de los aislados. Las bactérias fueron aisladas del ganado Bos indicus, procedente de la región del Alto Magdalena, que pastoreaban Teatino (Bouteloua repens) y del ganado Sanmartinero (una raza nativa) procedente de los Llanos Orientales de Colombia, que pastoreaban Brachiaria spp. La identificación del aislado fue confirmada usando métodos moleculares. Todos los aislados de F. succinogenes mostraron mayor capacidad de degradación de las preparaciones de pared celular de Bouteloua repens que los de R. flavefaciens (P<0.0001). La capacidad de los aislados individuales para degradar la pared celular también difirió significativamente (P<0.0001). Los aislados nativos sobrepasaron considerablemente la capacidad para digerir la pared celular de Bouteloua repens de las cepas de referencia de R. flavefaciensATCC19208 (12.83% vs. 6.83%) y F. succinogenes ATCC19169 (13.77% vs. 7.94%), diferencia que fue altamente significativa (p<0.05) para todos los aislados. Los resultados sugieren que, en condiciones tropicales, las bacterias ruminales nativas tienen una alta capacidad para degradar la lignocelulosa. Se requiere mayor investigación sobre la utilidad potencial del inóculo o de extractos enzimáticos desarrollados a partir de tales aislados, a fin de aumentar la degradabilidad por el ganado de forrajes de baja calidad o para definir las aplicaciones industriales pueden ser mejoradas por el uso de estos productos.

 

Faisury Ossa, Corporación Colombiana de Investigación Agropecuaria (Agrosavia)

Programa Nacional de Fisiología y Nutrición Animal.

Martha Arcos, Corporación Colombiana de Investigación Agropecuaria (Agrosavia)

Programa Nacional de Fisiología y Nutrición Animal.

 

Tito Díaz, Corporación Colombiana de Investigación Agropecuaria (Agrosavia)

Subdirección de Investigación Estratégica. 

Wolfgang Pittroff, University of California, Davis.

Ruminant System Laboratory.

Ossa, F., Arcos, M., Díaz, T., & Pittroff, W. (2003). Degradación in vitro de Bouteloua repens por cultivos de R. flavefaciens y F. succinogenes aislados de ganado alimentado con pastos tropicales en Colombia. Ciencia Y Tecnología Agropecuaria, 4(1), 29–35. https://doi.org/10.21930/rcta.vol4_num1_art:10

Akin, D. E. 1988. Biological structure of lignocellulose and its degradation in the rumen. Anim. Feed Sci.Technol. 21:295-310. https://doi.org/10.1016/0377-8401(88)90109-5

Akin,D. E.; Gordon,G. L. R.; Rigsby, L.L. 1989. Comparative fiber degradation by mixed rumen fungi from Australian and U.S.A. cattle.Anim. Feed Sci.Technol. 23:305-321. https://doi.org/10.1016/0377-8401(89)90051-5

Arcos, B. M. and Díaz, M. T. 2000. Cell wall digestibility of Bouteloua repens by pure and mixes culture of rumen fungi and bacteria isolates from grazing cattle in the tropics. Rev: Reproduction Nutrition Development 2:190.

Arcos B. M. 1998. Aislamiento, conservación y evaluación de la cinética de crecimiento y actividad celulolítica de cepas de Fibrobacter succinogenes de bovinos en pastoreo de gramíneas tropicales.Tesis de Maestría, Pontificia Universidad Javeriana, Bogotá, Colombia.

Bhat, S.;Wallace, R. J.; Orskov, E. R. 1990. Adhesion of cellulolytic ruminal bacteria to barley straw. Appl. Environ. Microbiol. 56:2698-2703. https://doi.org/10.1128/AEM.56.9.2698-2703.1990

Bryant, M. P.; Burkey L. A. 1953. Cultural methods and some characteristics of some of the more numerous groups of bacteria in the bovine rumen. J. Dairy Sci. 36: 205-217. https://doi.org/10.3168/jds.S0022-0302(53)91482-9

Bryant, M. P. 1972. Commentary on the Hungate technique for culture of anaerobic bacteria. Am. J. Clin. Nutr. 25:1324-1328. https://doi.org/10.1093/ajcn/25.12.1324

Coen, J. A.; Dehority, B. A. 1970. Degradation and utilization of hemicellulose from intact forages by cultures of rumen bacteria. Appl. Microbiol. 20:362-368. https://doi.org/10.1128/AEM.20.3.362-368.1970

Dehority, B.A. 1965. Degradation and utilization of isolated hemicellulose by pure cultures of cellulolytic rumen bacteria. J. Bacteriol. 89:1515-1520. https://doi.org/10.1128/JB.89.6.1515-1520.1965

Dehority,B. A.; Scott, H. W. 1967. Extent of cellulose and hemicellulose digestion in various forages by cultures of rumen bacteria. J. Dairy Sci. 50:1136-1141. https://doi.org/10.3168/jds.S0022-0302(67)87579-9

Dehority, B. A. 1968. Mechanism of isolated hemicellulose and xylan degradation by cellulolytic rumen bacteria. Appl. Microbiol. 16:781-786. https://doi.org/10.1128/AEM.16.5.781-786.1968

Dehority, B. A. 1991. Effects of microbial synergism on fiber digestion in the rumen bacteria. Fed. Proc. 32:1819-1825.

Díaz, T. E. 1993. Evaluation of cellulolytic activity during in situ digestion of corn stover. Journal Paper of the Iowa State University. 26:524.

Díaz, T. E. 2002. Fuentes de recursos utilizados en alimentación animal. En: Medicina Veterinaria y Zootecnia en Colombia. Capítulo 18, Fundación Edivez. p. 555-562.

Fondevila, M.; Dehority, A. 1996. Interactions between Fibrobacter succinogenes, Prevotella ruminicola, and Ruminococcus flavefaciens in the digestion of cellulose from forages. J.Anim. Sci. 74:678-684. https://doi.org/10.2527/1996.743678x

Forsberg, C. W.; Egbosimba, E. E. and S. MacLellan. 1999. Recent Advances in biotechnology of rumen bacteria-review. Asian- Australasian Journal of Animal Science 12(1):93-103. https://doi.org/10.5713/ajas.1999.93

Gordo, L. R.; Phillips, M.W. 1989. Degradation and utilization of cellulose and straw by three different anaerobic fungi from the ovine rumen. Appl. Environ. Microbiol. 7: 1703. https://doi.org/10.1128/AEM.55.7.1703-1710.1989

Hobson, P. N. 1988. The rumen microbial ecosystem. Elsevier, London and New York, pp. 527.

Hoover, W. H. 1985. Chemical factors involved in ruminal fiber digestion J. Dairy Sci. 69:2755 -2766. https://doi.org/10.3168/jds.S0022-0302(86)80724-X

Hungate R. E. 1969. A roll tube method for cultivation of strict anaerobes. Methods in Microbiology. 3B:117-132. https://doi.org/10.1016/S0580-9517(08)70503-8

Ifkovits, R. W.; Ragheb, H. S.; Barnes, R. F.; Packett, L. V. 1965. A pure-culture inoculum method for evaluation of forage cellulose digestibility. J.Anim. Sci. 13:1092-1099. https://doi.org/10.2527/jas1965.2441092x

Jouany, J.P.; Michalet-Doreau, B. and M. Doreau. 2000. Manipulation of the rumen ecosystem to support high-performance beef cattle - Review. Asian-Australasian Journal of Animal Science. 13(1):96-114. https://doi.org/10.5713/ajas.2000.96

Miron, J.; Duncan, S. H.; Stewart, C. S. 1994. Interactions between rumen bacterial strains during the degradation and utilization of the monosacharides of barley straw cellwalls. J. Appl. Bacteriol. 76:282-287. https://doi.org/10.1111/j.1365-2672.1994.tb01629.x

Moore, V. H. and Moore, E.C. 1977. The Virginia Polytechnic Institute and State University Anaerobe. Laboratory Blacksburg, Virginia.

Morris E. J. 1998. Characteristics of the adhesion of Ruminococcus albus to cellulose. FEMS Microbiol. Lett. 51:113-118. https://doi.org/10.1111/j.1574-6968.1988.tb02980.x

Osborne, J. M.; Dehority, B.A. 1989. Synergism in degradation and utilization of intact forage cellulose, hemicellulose, and pectin by three pure cultures of ruminal bacteria. Appl. Environ. Microbiol. 55:2247-2250. https://doi.org/10.1128/AEM.55.9.2247-2250.1989

Ørskov, E. R. and M. Ryle. 1990. Energy Nutrition in Ruminants. Elsevier Applied Science Publishers, London, New York.

Ossa, F. 1999. Identificación molecular de bacterias celulolíticas ruminales y degradación de la pared celular de Bouteloua repens por cepas nativas de Ruminococcus flavefaciens. Tesis de Maestría, Pontificia Universidad Javeriana, Bogotá, Colombia.

Pardee, A. B. 1962. The synthesis of enzymes. In: I.C. Gunsalus and R. Y. Stanier (ed.) The Bacteria.Vol. 3. Academic Press Inc., New York, p. 577-630.

Pollock M. R., 1962. Exoenzymes. In: I.C. Gunsalus and R.Y. Stanier (ed.) The Bacteria. Vol. 4. Academic Press Inc., New York, p. 121- 178.

Russell, J. B.; Dombwroski, D.B. 1980. Effects of pH on the efficiency of growth by pure cultures of rumen bacteria in continuos culture. Appl. Environ. Microbiol. 39:604-610. https://doi.org/10.1128/AEM.39.3.604-610.1980

Russell, J. B.;Wilson, D. B. 1996.Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? J. Dairy Sci. 79:1503- 1509. https://doi.org/10.3168/jds.S0022-0302(96)76510-4

SAS-STAT User's Guide. 1999. SAS Institute Inc., Cary (NC), USA.

Shi,Y.; Odt, L. C.;Weimer J. P. 1997. Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate- excess and substrate-limited conditions. Appl. Environ. Microbiol. 63:734-742. https://doi.org/10.1128/AEM.63.2.734-742.1997

Valérie, R.; Fonty, G.; Komisarczuk-Bony, S.; Gouet, P. 1990. Effects of physicochemical factor on adhesion to cellulose avicel of the ruminal bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes subsp. succinogenes. Appl. Environ. Microbiol. 56:3081- 3087. https://doi.org/10.1128/AEM.56.10.3081-3087.1990

Van Gylswyk, N.O.; Schwartz, H. M. 1984. Microbial Ecology of Cellulose and Hemicellulose Metabolism in Gastrointestinal Ecosystems. National Chemical Research Laboratory. Pretoria, South Africa. p. 588-599.

Van Soest, P. J.; Robertson, J.; Lewis, B. 1991. Symposium: Carbohydrate methodology, metabolism and nutritional implications in dairy cattle. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Van Soest, P. J. 1993. Cell wall matrix interactions and degradation session synopsis. In: H.G. Jung et al (ed.) Forage Cell Wall Structure and Digestibility. ASA-CSSA and SSSA, Madison (WI), USA, p. 377-395. https://doi.org/10.2134/1993.foragecellwall.c15

Wilson, J. R.; Mertens, D. R. 1995. Crop quality and utilization. Crop Science. 35:251- 259. https://doi.org/10.2135/cropsci1995.0011183X003500010046x

Wood, T. M.,Wilson, C. A.; Stewart, C. S. 1982. Preparation of the cellulase from the cellulolytic anaerobic rumen bacteria Ruminococcus albus and its release from the bacterial https://doi.org/10.1042/bj2050129

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

628 | 347




 

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.