Resumen
Dentro de la familia Solanaceae, el género monofilético Solanum es el más grande y diverso. Dentro de este género, S. quitoense Lam. (lulo) y S. betaceum Cav. (tomate de árbol) representan dos de las especies más importantes de Solanáceas neotropicales para convertirse en cultivos prominentes en mercados locales y de exportación. S. quitoense y su pariente silvestre S. hirtum pertenecen al clado Leptostemomum del género Solanum, mientras que S. betaceum y su pariente silvestre S. unilobum pertenecen al clado Cyphomandra del mismo género. En estudios filogenéticos previos se ha reportado que el clado Leptostemomum y el Cyphomandra podrían formar un clado hermano al de Papa (que agrupa a S. lycopersicum y S. tuberosum entre otras especies); alternativamente, estos tres clados formarían una politomía al interior del género. Con el propósito de clarificar las relaciones entre los clados del género Solanum y contribuir con el entendimiento de su proceso de divergencia, el presente estudio utilizó secuencias de marcadores COSII para conducir análisis filogenéticos y de datación. Los resultados obtenidos soportan la hipótesis que indica que Leptostemomum y Cyphomandra forman un subclado hermano al clado Papa. Adicionalmente, éstos sugieren que la divergencia entre los pares S. hirtum y S. quitoense, y S. unilobum y S. betaceum ocurrió hace aproximadamente un millón y 450 mil años respectivamente, periodos que coinciden con eventos de cambio climático a los que se les ha atribuido la diversificación de varios clados andinos.
Oscar Bedoya-Reina, Corporación Colombiana de Investigación Agropecuaria (Agrosavia)
Candidato a Ph.D en Bioinformática y Genómica. Laboratorio de Genética Molecular Vegetal, Centro de Biotecnología y Bioindustria (CBB), Mosquera, Cundinamarca.
Luz Stella Barrero, Corporación Colombiana de Investigación Agropecuaria (Agrosavia)
Ph.D en Genética vegetal. Laboratorio de Genética Molecular Vegetal. Mosquera, Cundinamarca.
Acevedo-Rosas R, Cameron K, Sosa V, Pell S. 2004. A molecular phylogenetic study of Graptopetalum (Crassulaceae) based on ETS, ITS, RPL16, and TRNL-F nucleotide sequences 91(7)1099-1104. https://doi.org/10.3732/ajb.91.7.1099
Alba R, Kelmenson PM, Cordonnier-Pratt M-M, Pratt LH. 2000. The phytochrome gene family in tomato and the rapid differential evolution of this family in Angiosperms. Molecular Biology and Evolution 17(3):362-373. https://doi.org/10.1093/oxfordjournals.molbev.a026316
Benítez A, Valencia J, Estrada EI, Baena D. 1991. Phenotypic characterization of certain accessions in the lulo (Solanum quitoense) germplasm bank. En: Hawkes J, Lester RN, Nee M, Estrada N (eds.) Solanaceae III: Taxonomy, Chemistry, Evolution. Royal Botanic Gardens Kew and Linnean Society of London, London. pp. 437-450.
Bernatzky R, Tanksley SD. 1986a. Genetics of actin-related sequences in tomato. Theoretical and Applied Genetics 72:314-321. https://doi.org/10.1007/BF00288567
Bernatzky R, Tanksley SD. 1986b. Toward a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics 112:887-898.
Bohs L. 1994. Cyphomandra (Solanaceae) En Flora Neotropica vol. 63 New York Botanical Garden, p. 1-175.
Bohs L. 1991. Crossing studies in Cyphomandra (Solanaceae) and their systematic and evolutionary significance. American Journal of Botany 78(12):10. https://doi.org/10.1002/j.1537-2197.1991.tb14532.x
Bohs L. 2004. A chloroplast DNA phylogeny of Solanum section Lasiocarpa. Systematic Botany 29(1):177-187. https://doi.org/10.1600/036364404772974310
Bohs L. 2007. Phylogeny of the Cyphomandra clade of the genus Solanum (Solanaceae) based on ITS sequence data. Taxon 56(4):1012-1026. https://doi.org/10.2307/25065901
Chaw SM, Zharkikh A, Sung HM, Lau TC, Li WH. 1997. Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences. Molecular Biology and Evolution 14(1):56-68. https://doi.org/10.1093/oxfordjournals.molbev.a025702
Chesser RT. 2000. Evolution in the High Andes: The phylogenetics of Muscisaxicola ground-tyrants. Molecular Phylogenetics and Evolution 15(3):369-380. https://doi.org/10.1006/mpev.1999.0774
Chung HJ, Jung JD, Park HW, Kim JH, Cha HW, Min SR, Jeong WJ, Liu JR. 2006. The complete chloroplast genome sequences of Solanum tuberosum and comparative analysis with Solanaceae species identified the presence of a 241-bp deletion in cultivated potato chloroplast DNA sequence. Plant Cell Reports 25(12):1369-1379. https://doi.org/10.1007/s00299-006-0196-4
Clegg MT. 1993. Chloroplast gene sequences and the study of plant evolution. PNAS 90:363-367. https://doi.org/10.1073/pnas.90.2.363
Cossios D, Lucherini M, Ruiz-Garcia M, Angers B. 2009. Influence of ancient glacial periods on the Andean fauna: the case of the pampas cat (Leopardus colocolo). BMC Evolutionary Biology 9(1):68. https://doi.org/10.1186/1471-2148-9-68
D'Arcy WG. 1991. The Solanaceae since 1976, with a review of its biogeography. En: Hawkes JG, Lester RN, Nee M, Estrada E (eds.) Solanaceae III: Taxonomy, Chemistry, Evolution. Royal Botanic Garden, Kew, pp. 75-137.
Downie SR, Katz-Downie DS y Watson MF. 2000. A phylogeny of the flowering plant family Apiaceae based on chloroplast DNA rpl16 and rpoC1 intron sequences: towards a suprageneric classification of subfamily Apioideae. American Journal of Botany 87(2):273-292. https://doi.org/10.2307/2656915
Ewing B, Green P. 1998. Base-Calling of Automated Sequencer Traces Using Phred. II. Error Probabilities. Genome Research 8(3):186-194. https://doi.org/10.1101/gr.8.3.186
Gordon D, Abajian C, Green P. 1998. Consed: A Graphical Tool for Sequence Finishing. Genome Research 8(3):195-202. https://doi.org/10.1101/gr.8.3.195
Gracie C. 1993. Pollination of Cyphomandra endopogon var. endopogon (Solanaceae) by Eufriesea spp. (Euglossini) in French Guiana. Brittonia 45(1):39-46. https://doi.org/10.2307/2806859
Graham SW and Olmstead RG. 2000. Utility of 17 chloroplast genes for inferring the phylogeny of the basal angiosperms. American Journal of Botany 87:1712-1730. https://doi.org/10.2307/2656749
Heiser C. 1972. The Relationships of the Naranjilla, Solanum quitoense. Biotropica 4(2):77-84. https://doi.org/10.2307/2989729
Heiser C. 1985. Ethnobotany of the Naranjilla (Solanum quitoense) and its relatives. Economic Botany 39(1): 4-11. https://doi.org/10.1007/BF02861168
Heiser C. 1989. Artificial Hybrids in Solanum sect. Lasiocarpa. Systematic Botany 14(1):3-6. https://doi.org/10.2307/2419045
Heiser C, Anderson G. 1999. "New" Solanums. En: Perspectives on new crops and new uses. Janick J. ASHS Press, Alexandria, VA. pp. 379-384.
Huang S, van der Vossen EA, Kuang H, Vleeshouwers V, Zhang N, Borm T, van Eck HJ, Baker B, Jacobsen E, Visser R. 2005. Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. The Plant Journal 42(2): 251-261. https://doi.org/10.1111/j.1365-313X.2005.02365.x
Jeanneau M, Gerentes D, Foueillassar X, Zivy M, Vidal J, Toppan A, Perez P. 2002. Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4-PEPC. Biochimie 84(11):1127-1135. https://doi.org/10.1016/S0300-9084(02)00024-X
Knapp S. 2002. Tobacco to tomatoes: a phylogenetic perspective on fruit diversity in the Solanaceae. Journal of Experimental Botany 53(377):2001-2022. https://doi.org/10.1093/jxb/erf068
Kou MC, Yen JH, Hong JT, Wang CL, Lin CW, Wu MJ. 2009. Cyphomandra betacea Sendt. phenolics protect LDL from oxidation and PC12 cells from oxidative stress. Lwt-Food Science and Technology 42(2):458-463. https://doi.org/10.1016/j.lwt.2008.09.010
Lobo M, Medina CI, Cardona M. 2000. Resistencia de campo a la antracnosis de los frutos (Colletotrichum gloeosporiodes) en tomate de árbol (Cyphomandra (Solanum) betacea (betaceum) Cav. Sendt.). Revista Facultad Nacional de Agronomía, Medellín 53(2):1129-1141.
Lobo M. 2006. Recursos genéticos y mejoramiento de frutales andinos: una visión conceptual. Revista Corpoica - Ciencia y Tecnología Agropecuaria 7(2):40-54. https://doi.org/10.21930/rcta.vol7_num2_art:68
Lobo M, Medina CI, Delgado OA, Bermeo A. 2007. Morphological variability of the Colombian collection of lulo (Solanum quitoense Lam.) and related Lasiocarpa section species. Revista Facultad Nacional de Agronomía, Medellín 60(2):3939-3964.
Manoko MLK, Van den Berg RG, Feron RMC, Van der Weerden GM, Mariani C. 2008. Genetic diversity of the African hexaploid species Solanum scabrum Mill. and Solanum nigrum L. (Solanaceae). Genetic Resources and Crop Evolution 55(3):409-418. https://doi.org/10.1007/s10722-007-9248-z
Manuel N. 2004. The implications of Tertiary and Quaternary sea level rise events for avian distribution patterns in the lowlands of northern South America. Global Ecology & Biogeography 13(2):149-161. https://doi.org/10.1111/j.1466-882X.2004.00076.x
Miller JS, Diggle PK. 2003. Diversification of andromonoecy in Solanum section Lasiocarpa (Solanaceae): The roles of phenotypic plasticity and architecture. American Journal of Botany 90(5):707-715. https://doi.org/10.3732/ajb.90.5.707
Morgenstern B. 2004. DIALIGN: multiple DNA and protein sequence alignment at BiBiServ. Nucleic Acids Research 32(suppl. 2): W33-36. https://doi.org/10.1093/nar/gkh373
Mueller LA, Solow TH, Taylor N, Skwarecki B, Buels R, Binns J, Lin C, Wright MH, Ahrens R, Wang Y, Herbst EV, Keyder ER, Menda N, Zamir D, Tanksley SD. 2005. The SOL Genomics Network. A Comparative Resource for Solanaceae Biology and Beyond. Plant Physiology 138(3):1310-1317. https://doi.org/10.1104/pp.105.060707
Olmstead RG, Sweere JA, Spangler RE, Bohs L, Palmer JD. 1999. Phylogeny and provisional classification of the Solanaceae based on chloroplast DNA. En: M Nee, DE Symon, RN Lester, JP Jessop. Solanaceae IV. Royal Botanic Gardens, Kew. pp. 111-137.
Palmer JD, Jansen RK, Michaels HJ, Chase MW and Manhart JR. 1998. Chloroplast DNA Variation and Plant Phylogeny. Annals of the Missouri Botanical Garden 75(4):1180-1206. https://doi.org/10.2307/2399279
Posada D, Crandall KA. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14(9):817-818. https://doi.org/10.1093/bioinformatics/14.9.817
Pratt RC, Francis DA, Barrero LS. 2008. Genomics of Tropical Solanaceous species: Established and emerging crops. En: Moore PH, Ming R. (eds.) Plant Genetics, Genomics: Crops and Models. Springer, New York, NY, EU. pp. 453-467. https://doi.org/10.1007/978-0-387-71219-2_19
Sanderson M. 2006. r8s, http://loco.biosci.arizona.edu/r8s/. University of California, Davis, Davis, California, EEUU.
Sang T, Crawford DJ y Stuessy TF. 1997. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae) American Journal of Botany 84(9):1120-1136. https://doi.org/10.2307/2446155
Stevens PF. 2001 y en adelante. Angiosperm Phylogeny Website. Version 9, June 2008 [and more or less continuously updated since].
Swofford D. 2004. Paup 4.0 for Macintosh: Phylogenetic Analysis Using Parsimony (Software and User's Book for Macintosh). Sinauer Associates, Incorporated.
Weese TL, Bohs L. 2007. A Three-Gene Phylogeny of the genus Solanum (Solanaceae). Systematic Botany 32: 445-463. https://doi.org/10.1600/036364407781179671
Wikstrom N, Savolainen V, Chase MW. 2001. Evolution of the angiosperms: calibrating the family tree. Proceedings of the Royal Society B. 268:2211-2220. https://doi.org/10.1098/rspb.2001.1782
Wu F, Eannetta NT, Xu Y, Durrett R, Mazourek M, Jahn MM, Tanksley SD. 2009a. A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus Capsicum. Theoretical and Applied Genetics 118(7):1279-1293. https://doi.org/10.1007/s00122-009-0980-y
Wu F, Eannetta NT, Xu Y, Tanksley SD. 2009b. A detailed synteny map of the eggplant genome based on conserved ortholog set II (COSII) markers. Theoretical and Applied Genetics 118(5):927-935. https://doi.org/10.1007/s00122-008-0950-9