Resumen
Se realizó un estudio para cuantificar la toxicidad y la presión ecotoxicológica de los plaguicidas sintéticos en la provincia de Sancti Spíritus (Cuba) entre 2011 y 2014. Este trabajo puede ayudar a desarrollar políticas y prácticas de gestión para reducir los peligros del uso de plaguicidas sintéticos en el país. A través de un estudio longitudinal descriptivo, se identificaron los riesgos potenciales para el medioambiente y la salud humana asociados con el uso de plaguicidas. Para determinar la toxicidad y ecotoxicidad del uso de plaguicidas, se utilizaron los indicadores de aplicaciones equivalentes (ƩSeq) y de riesgos laborales y medioambientales (POCER, por su sigla en inglés), además de la metodología de carga tóxica (TL, por su sigla en inglés) del Instituto Cubano de Sanidad Vegetal. Durante el periodo de estudio, 124 ingredientes activos correspondientes a 62 familias químicas fueron aplicados. Por su frecuencia de uso, predominaron los organofosforados, triazoles, piretroides, compuestos inorgánicos (como el cobre), carbamatos, ditiocarbamatos, neonicotinoides, ariloxifenoxipropionato y organoclorados. El uso de plaguicidas tóxicos y la falta de equipos de protección personal, entre otros aspectos, hicieron que los trabajadores, los residentes y los aplicadores fueran los módulos humanos con el mayor riesgo de exposición. Por otro lado, los módulos de mayor presión ecotoxicológica son los organismos acuáticos, la persistencia en el suelo y el agua subterránea. Con el uso de los indicadores POCER y ƩSeq, se puede realizar una evaluación más precisa de la toxicidad y la ecotoxicidad en Cuba, en comparación con la obtenida al utilizar solo la ecuación TL, como se hace actualmente en el país. La sustitución de los plaguicidas más tóxicos (paratión, endosulfán, bifentrina, oxicloruro de cobre, mancozeb, paraquat, diquat y ametrina) por otros menos tóxicos (cipermetrina, tebuconazol, triadimenol y bispiribac-sodio) podría ayudar a reducir la presión de los plaguicidas sintéticos sobre los seres humanos y el medioambiente.
Beasley, V. R. (2020). Direct and indirect effects of environmental contaminants on amphibians. En Reference module in earth systems and environmental sciences (2nd ed.). Elsevier. https://doi.org/10.1016/b978-0-12-409548-9.11274-6
Böcker, T., & Finger, R. (2016). European pesticide tax schemes in comparison : an analysis of experiences and developments. Sustainability, 8(4), 378. https://doi.org/10.3390/su8040378
Bozdogan, A. M., Yarpuz-Bozdogan, N., & Tobi, I. (2015). Relationship between environmental risk and pesticide application in cereal farming. International Journal of Environmental Research, 9(3), 1047-1054. https://doi.org/10.22059/IJER.2015.992
Chau, N. D., Sebesvari, Z., Amelung, W., & Renaud, F. G. (2015). Pesticide pollution of multiple drinking water sources in the Mekong Delta, Vietnam: evidence from two provinces. Environmental Science and Pollution Research, 22(12), 9042-9058. https://doi.org/10.1007/s11356-014-4034-x
Chaves, T. V., Islam, M., De Moraes, M. O., De Alencar, M. V., Gomes, D. C., De Carvalho, R., Maluf, S., Do Amaral, F. P., Paz, M. F., Cerqueira, G., Rolim, H. M., De Castro e Sousa, J. M., Melo-Cavalcante, A. A., & De Moraes, M. E. (2017). Occupational and life-style factors-acquired mutagenicity in agric-workers of northeastern Brazil. Environmental Science and Pollution Research, 24, 15454-15461. https://doi.org/10.1007/s11356-017-9150-y
Claeys, S., Vagenende, B., De Smet, B., Lelieur, L., & Steurbaut, W. (2005). The POCER indicator: a decision tool for non-agricultural pesticide use. Pest Management Science, 61(8), 779-786. https://doi.org/10.1002/ps.1062
Cremonese, C., Freire, C., Camargo, A., Lima, J., Koifman, S., & Meyer, A. (2014). Pesticide consumption, central nervous system and cardiovascular congenital malformations in the South and Southeast region of Brazil. International Journal of Occupational Medicine and Environmental Health, 27(3), 474-486. https://doi.org/10.2478/s13382-014-0269-5
Cunha, J. P., Chueca, P., Garcerá, C., & Moltó, E. (2012). Risk assessment of pesticide spray drift from citrus applications with air-blast sprayers in Spain. Crop Protection, 42, 116-123. https://doi.org/10.1016/j.cropro.2012.06.001
Damalas, C. A., & Koutroubas, S. D. (2018). Farmers' behaviour in pesticide use: a key concept for improving environmental safety. Current Opinion in Environmental Science & Health, 4, 27-30. https://doi.org/10.1016/j.coesh.2018.07.001
De la Rosa Cruz, N. L., Sánchez-Salinas, E., & Ortiz-Hernández, M. L. (2013). Biosurfactantes y su papel en la biorremediación de suelos contaminados con plaguicidas. Revista Latinoamericana de Biotecnología Ambiental y Algal, 4(1), 47-67. http://www.solabiaa.org/ojs3/index.php/RELBAA/article/view/43
De Smet, B., Claeys, S., Vagenende, B., Overloop, S., Steurbaut, W., & Van Steertegem, M. (2005). The sum of spread equivalents: a pesticide risk index used in environmental policy in Flanders, Belgium. Crop Protection, 24(4), 363-374. https://doi.org/http://dx.doi.org/10.1016/j.cropro.2004.09.005
De Smet, B., & Steurbaut, W. (2002). Verfijning van de SEQ-indicator voor de evaluatie van het bestrijdingsmiddelengebruik in Vlaanderen. Studie Uitgevoerd in Opdracht van de Vlaamse Milieumaatschappij, MIRA. Universiteit Gent, Vakgroep Gewasbescherming.
Díaz, J. D. (2009). Disminución del número de aplicaciones de plaguicidas químicos en la empresa Cultivos Varios Manacas [Tesis de maestría, Universidad Central Martha Abreu de Las Villas]. Repositorio Institucional UCLV. http://dspace.uclv.edu.cu:8089/handle/123456789/2202
Dugger-Webster, A., & LePrevost, C. E. (2018). Following pesticide labels: a continued journey toward user comprehension and safe use. Current Opinion in Environmental Science & Health, 4, 19-26. https://doi.org/10.1016/j.coesh.2018.03.004
European Food Safety Authority [EFSA]. (2017). The 2015 European Union report on pesticide residues in food. EFSA Journal, 15(4), e04791. https://doi.org/10.2903/j.efsa.2017.4791
Fevery, D., Houbraken, M., & Spanoghe, P. (2016). Pressure of non-professional use of pesticides on operators, aquatic organisms and bees in Belgium. Science of the Total Environment, 550, 514-521. https://doi.org/10.1016/j.scitotenv.2016.01.123
Fevery, D., Peeters, B., Lenders, S., & Spanoghe, P. (2015). Adjustments of the Pesticide Risk Index used in environmental policy in Flanders. PLoS ONE, 10(6), 1-21. https://doi.org/10.1371/journal.pone.0129669
Food and Agriculture Organization of the United Nations, & United Nations Environment Programme. (2017). Rotterdam Convention on the prior informed consent procedure for certain hazardous chemicals and pesticides in international trade. Texts and annexes (Revised in 2017). Rotterdam Convention Secretariat. http://www.pic.int/Portals/5/ConventionText/UNEP-FAO-RC-CONVTEXT-2017.English.pdf
González, M. L., & Conill, T. P. (1999). Mortalidad por intoxicaciones agudas producidas por plaguicidas: Cuba, 1990-1994. Revista Cubana de Higiene y Epidemiología, 37(2), 76-81. http://www.revepidemiologia.sld.cu/index.php/hie/article/view/893
Hernández Núñez, J., & Pérez-Consuegra, N. (2012). Tendencias en el uso de plaguicidas en Batabanó, provincia Mayabeque. Agricultura Orgánica, 18(1), 30-33. http://www.actaf.co.cu/revistas/revista_ao_95-2010/Rev%202012-1/10%20plaguicidasBatabano.pdf
Hladik, M. L., Vandever, M., & Smalling, K. L. (2016). Exposure of native bees foraging in an agricultural landscape to current-use pesticides. Science of the Total Environment, 542(Part A), 469-477. https://doi.org/10.1016/j.scitotenv.2015.10.077
Houbraken, M., Bauweraerts, I., Fevery, D., Labeke, M. Van, & Spanoghe, P. (2016). Pesticide knowledge and practice among horticultural workers in the Lâm Đồng region, Vietnam : a case study of chrysanthemum and strawberries. Science of the Total Environment, 550, 1001-1009. https://doi.org/10.1016/j.scitotenv.2016.01.183
Imoro, Z. A., Larbi, J., & Duwiejuah, A. B. (2019). Pesticide availability and usage by farmers in the northern region of Ghana. Journal of Health and Pollution, 9(23), 190906. https://doi.org/10.5696/2156-9614-9.23.190906
Kase, R., Korkaric, M., Werner, I., & Ågerstrand, M. (2016). Criteria for Reporting and Evaluating ecotoxicity Data (CRED): comparison and perception of the Klimisch and CRED methods for evaluating reliability and relevance of ecotoxicity studies. Environmental Sciences Europe, 28, 7. https://doi.org/10.1186/s12302-016-0073-x
Kudsk, P., Jørgensen, L. N., & Ørum, J. E. (2018). Pesticide Load—A new Danish pesticide risk indicator with multiple applications. Land Use Policy, 70, 384-393. https://doi.org/10.1016/j.landusepol.2017.11.010
Levine, S. L., & Borgert, C. J. (2018). Review and recommendations on criteria to evaluate the relevance of pesticide interaction data for ecological risk assessments. Chemosphere, 209, 124-136. https://doi.org/10.1016/j.chemosphere.2018.06.081
Leyva, J. B., García, L. M., Bastidas, P. J., Astorga, J. E., Bejarano, J., Cruz, A., Martínez, I. E., & Betancourt, M. (2014). Uso de plaguicidas en un valle agrícola tecnificado en el noroeste de México. Revista Internacional de Contaminación Ambiental, 30(3), 247-261. https://www.revistascca.unam.mx/rica/index.php/rica/article/view/45542
López Dávila, E., Houbraken, M., De Rop, J., Wumbei, A., Du Laing, G., Romero, O., & Spanoghe, P. (2020). Pesticides residues in tobacco smoke: risk assessment study. Environmental Monitoring and Assessment, 192, 615. https://doi.org/10.1007/s10661-020-08578-7
López-Dávila, E., Ramos Torres, L., Houbraken, M., Du Laing, G., Romero Romero, O., & Spanoghe, P. (2020). Conocimiento y uso práctico de plaguicidas en Cuba. Ciencia y Tecnología Agropecuaria, 21(1), e1282. https://doi.org/10.21930/rcta.vol21_num1_art:1282
Mendonca, M., Tamas, C., Kiraly, L., Talo, H., & Rajah, J. (2016). Successful use of ECLS in cardiopulmonary failure due to aluminum phosphide poising. The Egyptian Journal of Critical Care Medicine, 4(1), 33-35. https://doi.org/10.1016/j.ejccm.2016.02.004
Mesnage, R., Defarge, N., Vendômois, J. S. De, & Séralini, G. (2014). Major pesticides are more toxic to human cells than their declared active principles. BioMed Research International, 2014, 179691. https://doi.org/http://dx.doi.org/10.1155/2014/179691
Moermond, C. T., Kase, R., Korkaric, M., & Ågerstrand, M. (2016). CRED : criteria for reporting and evaluating ecotoxicity data. Environmental Toxicology and Chemistry, 35(5), 1297-1309. https://doi.org/10.1002/etc.3259
Mwila, K., Burton, M. H., Van Dyk, J. S., & Pletschke, B. I. (2013). The effect of mixtures of organophosphate and carbamate pesticides on acetylcholinesterase and application of chemometrics to identify pesticides in mixtures. Environmental Monitoring and Assessment, 185, 2315-2327. https://doi.org/10.1007/s10661-012-2711-0
Nordborg, M., Arvidsson, R., Finnveden, G., Cederberg, C., Sörme, L., Palm, V., Stamyr, K., & Molander, S. (2017). Updated indicators of Swedish national human toxicity and ecotoxicity footprints using USEtox 2.01. Environmental Impact Assessment Review, 62, 110-114. https://doi.org/10.1016/j.eiar.2016.08.004
Oficina Nacional de Estadística e Información. [ONEI]. (2019). Sector agropecuario. Indicadores seleccionados. Enero-marzo de 2019. http://www.onei.gob.cu/node/14215
Oficina Nacional de Estadística e Información. [ONEI]. (2020). Anuario Estadístico de Cuba. Capítulo 9: Agricultura, ganadería, silvicultura y pesca. http://www.onei.gob.cu/node/15024
Organización Mundial de la Salud, & Organización de las Naciones Unidas para la Agricultura y la Alimentación. (2015). Código internacional de conducta para la gestión de plaguicidas. http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/Code/Code_Spanish_2015_Final.pdf
Oussama, M., Kamel, E., Philippe, L. G., Elisabeth, M., Jacques, F., Habiba, A., & Jean-paul, B. (2015). Assessing plant protection practices using pressure indicator and toxicity risk indicators : analysis of the relationship between these indicators for improved risk management, application in viticulture. Environmental Science and Pollution Research, 22, 8058-8074. https://doi.org/10.1007/s11356-014-3736-4
Parrilla, P., Lozano, A., Uclés, S., Gómez, M. M., & Fernández-Alba, A. R. (2015). A sensitive and efficient method for routine pesticide multiresidue analysis in bee pollen samples using gas and liquid chromatography coupled to tandem mass spectrometry. Journal of Chromatography A, 1426, 161-173. https://doi.org/10.1016/j.chroma.2015.11.081
Pérez-Parada, A., Goyenola, G., Teixeira de Mello, F., & Heinzen, H. (2018). Recent advances and open questions around pesticide dynamics and effects on freshwater fishes. Current Opinion in Environmental Science & Health, 4, 38-44. https://doi.org/10.1016/j.coesh.2018.08.004
Pesticide Action Network Europe. (2010). NAP Best Practice. Sustainable use of pesticides: implementing a national action plan. https://www.pan-europe.info/old/Resources/Reports/NAP_best_practice.pdf
Räsänen, K., Mattila, T., Porvari, P., Kurppa, S., & Tiilikkala, K. (2015). Estimating the development of ecotoxicological pressure on water systems from pesticides in Finland 2000-2011. Journal of Cleaner Production, 89, 65-77. https://doi.org/10.1016/j.jclepro.2014.11.008
Räsänen, K., Nousiainen, R., Kurppa, S., Autio, S., Junnila, S., Tiilikkala, K., Kaseva, J., & Laitinen, P. (2013). How to measure the environmental risks from uses of plant protection products for achieving the IPM requirements and risk communication – A case study on the production chain of cereal farming in Finland. MTT Report, 105. https://jukuri.luke.fi/handle/10024/481109
Roberts, J. R., & Routt, J. (2013). Recognition and management of pesticide poisonings (6th ed.). United States Enviromental Protection Agency. https://www.epa.gov/pesticide-worker-safety/recognition-and-management-pesticide-poisonings
Rosquete, C. (2011). Evaluación de impacto de la supresión de endosulfán en el agroecosistema Güira de Melena, Artemisa, Cuba [Tesis de maestría, Universidad Agraria de La Habana Fructuoso Rodríguez Pérez, La Habana, Cuba]. https://www.scribd.com/document/190622960/Tesis-Endosulfan-Cuba
Schreinemachers, P., Afari-Sefa, V., Hy, C., Dung, P., Praneetvatakul, S., & Srinivasan, R. (2015). Safe and sustainable crop protection in Southeast Asia: status, challenges and policy options. Environmental Science and Policy, 54, 357-366. https://doi.org/10.1016/j.envsci.2015.07.017
Sharma, A., Kumar, V., Thukral, A. K., & Bhardwaj, R. (2019). Responses of plants to pesticide toxicity: an overview. Planta Daninha, 37, e019184291. https://doi.org/10.1590/S0100-83582019370100065
Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G. P., Handa, N., Kohli, S. K., Yadav, P., Bali, A. S., Parihar, R. D., Dar, O. I., Singh, K., Jasrotia, S., Bakshi, P., Ramakrishnan, M., Kumar, S., Bhardwaj, R., & Thukral, A. K. (2019). Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences, 1, 1446. https://doi.org/10.1007/s42452-019-1485-1
Shil Cha, E., Hwang, S., & Jin Lee, W. (2014). Childhood leukemia mortality and farming exposure in South Korea : a national population-based birth cohort study. Cancer Epidemiology, 38(4), 401-407. https://doi.org/10.1016/j.canep.2014.05.003
Tollefsen, K. E., Bæk, K., Almeida, A. C., Haug, L. A., Norli, H. R., Odenmarck, S. R., & Stenrød, M. (2016). Evaluation of the combined toxicity assessment and cumulative risk assessment of ecologically relevant mixtures of plant protection products (PPPs) under Norwegian conditions. Report no. 7030-2016. Norwegian Institute for Water Research. https://niva.brage.unit.no/niva-xmlui/handle/11250/2391803
United Nations Environment Programme. (2009). Stockholm Convention on Persistent Organic Pollutants. Report of the Persistent Organic Pollutants Review Committee on the work of its fifth meeting. UNEP/POPS/POPRC.5/10. http://chm.pops.int/Default.aspx?tabid=592
Vázquez, L. L., & Pérez, N. (2017). El control biológico integrado al manejo territorial de plagas de insectos en Cuba. Agroecología, 12(1), 39-46. https://revistas.um.es/agroecologia/article/view/330331
Ventura, C., Ramos Nieto, M. R., Bourguignon, N., Lux-Lantos, V., Rodriguez, H., Cao, G., Randi, A., Cocca, C., & Núñez, M. (2015). Pesticide chlorpyrifos acts as an endocrine disruptor in adult rats causing changes in mammary gland and hormonal balance. The Journal of Steroid Biochemistry and Molecular Biology, 156, 1-9. https://doi.org/10.1016/j.jsbmb.2015.10.010
Vercruysse, F., & Steurbaut, W. (2002). POCER, the pesticide occupational and environmental risk indicator. Crop Protection, 21(4), 307-315. https://doi.org/10.1016/S0261-2194(01)00102-8
Vryzas, Z. (2018). Pesticide fate in soil-sediment-water environment in relation to contamination preventing actions. Current Opinion in Environmental Science & Health, 4, 5-9. https://doi.org/10.1016/j.coesh.2018.03.001
World Health Organization. (2010). The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2009. https://apps.who.int/iris/handle/10665/44271
Wumbei, A., Houbraken, M., & Spanoghe, P. (2019). Pesticides use and exposure among yam farmers in the Nanumba traditional area of Ghana. Environmental Monitoring and Assessment, 191, 307. https://doi.org/10.1007/s10661-019-7449-5
Wustenberghs, H., Delcour, I., D'Haene, K., Lauwers, L., Marchand, F., Steurbaut, W., & Spanoghe, P. (2012). A dual indicator set to help farms achieve more sustainable crop protection. Pest Management Science, 68(8), 1130-1140. https://doi.org/10.1002/ps.3332
Wustenberghs, H., Fevery, D., Lauwers, L., Marchand, F., & Spanoghe, P. (2018). Minimising farm crop protection pressure supported by the multiple functionalities of the DISCUSS indicator set. Science of the Total Environment, 618, 1184-1198. https://doi.org/10.1016/j.scitotenv.2017.09.211
Yarpuz-Bozdogan, N., & Bozdogan, A. M. (2016). Pesticide exposure risk on occupational health in herbicide application. Fresenius Environmental Bulletin, 25(9), 3720-3727.