Resumen
Las arvejas han sido reconocidas como una fuente económica de nutrientes; por lo tanto, se requiere información básica respecto de sus características físico-químicas para el efectivo desarrollo de operaciones de procesamiento y mejoramiento de las semillas. En el presente estudio, se midieron diferentes propiedades en 16 genotipos de arveja para estudiar la variabilidad entre líneas, los parámetros genéticos y las correlaciones entre caracteres. El diámetro y peso de la semilla, el pH y la acidez titulable mostraron valores altos de heredabilidad en sentido amplio y pequeñas diferencias entre los coeficientes de variación genético y fenotípico, lo que indica que la variabilidad para estos caracteres se debe a diferencias genéticas. Los granos amarillos mostraron valores superiores para peso y tamaño (27,84 g; 0,57 cm) y cambios menores en el diámetro luego de su hidratación (48,35 %), mientras que los granos rugosos mostraron menor contenido de humedad (9,54 %), mayor capacidad de hidratación (1.314,66 g H2O/kg semilla) y contenido proteico (28,88 %). Cuarentina y B315 fueron los materiales más firmes y resistentes; B315 además mostró alta capacidad de hidratación, lo que lo hace adecuado para la industria del enlatado. A través de geles de poliacrilamida se determinaron diferencias en la composición proteica; Gypsi contiene mayor cantidad de legumina (47,27 %), beneficioso desde un punto de vista nutricional, y contiene menos convicilina (7,06 %), beneficioso para la industria alimenticia. Mediante el envejecimiento acelerado, se estudiaron los cambios de color debido al almacenamiento y se estableció que la línea Viper experimentó menores cambios, por lo cual sería recomendable para largos períodos de almacenamiento. En este estudio se han podido identificar líneas que pueden explotarse en la industria o en programas de mejoramiento de la calidad de la arveja.
AOAC. (1990). Official methods of analysis of the Association of Official Analytical Chemists. Association of Official Analytical Chemists.
Annor, G. G., Ma, Z., & Boye, J. I. (2014). Crops - Legumes. In S. Clark, S. Jung, & B. Lamsal (Eds.), Food processing: Principles and Applications (pp. 305-337). Wiley Blackwell. http://dx.doi.org/10.1002/9781118846315.ch14
Atak, M., Kaya, M. D., Kaya, G., Kaya, M., & Khawar, K. M. (2008). Dark green colored seeds increase the seed vigor and germination ability in dry green pea (Pisum sativum L.). Pakistan Journal of Botany, 40(6), 2345-2354.
Barac, M., Cabrilo, S., Pesic, M., Stanojevic, S., Zilic, S., Macej, O., & Ristic, N. (2010). Profile and functional properties of seed proteins from six pea (Pisum sativum) genotypes. International Journal of Molecular Sciences, 11(12), 4973-4990. http://dx.doi.org/10.3390%2Fijms11124973
Bashir, S., Shah, S., Naz, R., Hamid, A., Anjum, S., Zahid, N., ... Afzal, A. (2019). Physicochemical evaluation of field pea (Pisum sativum L.) landraces under rainfed conditions of AJandK-Pakistan. Pure and Applied Biology, 8(2), 1033-1042. http://dx.doi.org/10.19045/bspab.2019.80044
Boye, J., Zare, F. & Pletch, A. (2010). Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Research International, 43(2), 414-431. http://dx.doi.org/10.1016/j.foodres.2009.09.003
Coyne, C. J., Grusak, M. A., Razai, L., & Baik, B. K. (2005). Variation for pea seed protein concentration in the USDA Pisum core collection. Pisum Genetics, 37, 5-9.
Dahl, W. J., Foster, L. M., & Tyler, R. T. (2012). Review of the health benefits of peas (Pisum sativum L.). The British Journal of Nutrition, 108(S1), S3-S10. http://dx.doi.org/10.1017/S0007114512000852
Food and Agriculture Organization of the United Nations [FAO]. (2017). Crop statistics. FAOSTAT. https://www.fao.org/faostat/en/#data/QC
Ganjloo, A., Bimakr, M., Zarringhalami, S., Jalili Safaryan, M., & Ghorbani, M. (2018). Moisture-dependent physical properties of green peas (Pisum sativum L.). International Food Research Journal, 25(3), 1246-1252.
Gerrano, A. S. (2017). Preliminary study on variability and heritability estimates of micronutrient composition in the immature fruits of okra (Abelmoschus esculentus) genotypes in South Africa. Cogent Food and Agriculture, 3(1), 1408253. http://dx.doi.org/10.1080/23311932.2017.1408253
Gueguen, J., & Barbot, J. (1988). Quantitative and qualitative variability of pea (Pisum sativum L.) protein composition. Journal of the Science of Food and Agriculture, 42(3), 209-224. http://dx.doi.org/10.1002/jsfa.2740420304
Hradilová, I., Trněný, O., Válková, M., Cechová, M., Janská, A., Prokešová, L., … Smýkal, P. (2017). A combined comparative transcriptomic, metabolomic and anatomical analyses of two key domestication traits: pod dehiscence and seed dormancy in pea (Pisum sp.). Frontiers in Plant Science, 8, 542. http://dx.doi.org/10.3389/fpls.2017.00542
Jatoi, S. A., Afzal, M., Nasim, S., & Anwar, R. (2001). Seed deterioration study in pea, using accelerated ageing techniques. Pakistan Journal of Biological Sciences, 4(12), 1490-1494. http://dx.doi.org/10.3923/pjbs.2001.1490.1494
Joshi, M., Adhikari, B., Panozzo, J., & Aldred, P. (2010). Water uptake and its impact on the texture of lentils (Lens culinaris). Journal of Food Engineering, 100(1), 61-69. http://dx.doi.org/10.1016/j.jfoodeng.2010.03.028
Kosson, R., Czuchajowska, Z., & Pomeranz, Y. (1994). Smooth and wrinkled peas 1. General physical and chemical characteristics. Journal of Agricultural and Food Chemistry, 42(1), 91-95. http://dx.doi.org/10.1021/jf00037a014
Lam, A. C. Y., Karaca, A. C., Tyler, R. T., & Nickerson, M. T. (2018). Pea protein isolates: Structure, extraction, and functionality. Food Reviews International, 34(2), 126-147. http://dx.doi.org/10.1080/87559129.2016.1242135
Mahawar, M. K., Samuel, D. V. K., Sinha, J. P., & Jalgaonkar, K. (2018). Moisture-dependent physical and physiological properties of accelerated aged pea (Pisum sativum L.) seeds. Current Science, 114(4), 909. http://dx.doi.org/10.18520/cs/v114/i04/909-915
Maskus, H. & Arntfield, S. (2015). Processing and evaluation of an expanded, puffed pea snack product. Journal of Nutrition and Food Sciences, 5(4), 1. http://dx.doi.org/10.4172/2155-9600.1000378
Mertens, C., Dehon, L., Bourgeois, A., Verhaeghe‐Cartrysse, C., & Blecker, C. (2011). Agronomical factors influencing the legumin/vicilin ratio in pea (Pisum sativum L.) seeds. Journal of the Science of Food and Agriculture, 92(8), 1591-1596. http://dx.doi.org/10.1002/jsfa.4738
Nikolopoulou, D., Grigorakis, K., Stasini, M., Alexis, M. N., & Iliadis, K. (2007). Differences in chemical composition of field pea (Pisum sativum) cultivars: Effects of cultivation area and year. Food Chemistry, 103(3), 847-852. http://dx.doi.org/10.1016/j.foodchem.2006.09.035
Padalino, L., Mastromatteo, M., Lecce, L., Spinelli, S., Conto, F., & Del Nobile, A. M. (2014). Chemical composition, sensory and cooking quality evaluation of durum wheat spaghetti enriched with pea flour. International Journal of Food Science and Technology, 49(6), 1544-1556. http://dx.doi.org/10.1111/ijfs.12453
Parihar, A. K., Bohra, A., & Dixit, G. P. (2016). Nutritional benefits of winter pulses with special emphasis on peas and rajmash. In U. Singh, C. S. Praharaj, S. S. Singh, & N. P. Singh (Eds.), Biofortification of Food Crops (pp. 61-71). Springer. http://dx.doi.org/10.1007/978-81-322-2716-8_6
Periago, J., Ros, G., Martinez, C., Rincón, F., Lopez, G., Ortuño, J., & Rodrigo, J. (1995). Relationships between physical-chemical composition of raw peas and sensory attributes of canned peas. Journal of Food Quality, 19(2), 91-106. http://dx.doi.org/10.1111/j.1745-4557.1996.tb00407.x
Pietrasik, Z., & Janz, J. (2010). Utilization of pea flour, starch-rich and fiber-rich fractions in low fat bologna. Food Research International, 43(2), 602-608. http://dx.doi.org/10.1016/j.foodres.2009.07.017
Rodríguez, G. R., Moyseenko, J. B., Robbins, M. D., Morejón, N. H., Francis, D. M. & van de Knaap, E. (2010). Tomato Analyzer: a useful software application to collect accurate and detailed morphological and colorimetric data from two-dimensional objects. Journal of Visualized Experiments, 37, e1856. http://dx.doi.org/10.3791/1856
Saberi, B., Thakur, R., Vuong, Q. V., Chockchaisawasdee, S., Golding, J. B., Scarlett, C. J. & Stathopoulos, C. E. (2016). Optimization of physical and optical properties of biodegradable edible films based on pea starch and guar gum. Industrial Crops and Products, 86, 342-352. http://dx.doi.org/10.1016/j.indcrop.2016.04.015
Sadler, G. D., & Murphy, P. A. (2010). pH and titratable acidity. In S. S. Nielsen (Ed.), Food analysis (pp. 219-238). Springer.
Sarker, U., Islam, M. T., Rabbani, M. G., & Oba, S. (2016). Genetic variation and interrelationships among antioxidant, quality, and agronomic traits in vegetable amaranth. Turkish Journal of Agriculture and Forestry, 40(4), 526-535. https://doi.org/10.3906/tar-1405-83
Shafaei, S. M., Masoumi, A. A., & Roshan, H. (2016). Analysis of water absorption of bean and chickpea during soaking using Peleg model. Journal of the Saudi Society of Agricultural Sciences, 15(2), 135-144. http://dx.doi.org/10.1016/j.jssas.2014.08.003
Sharma, S., Singh, N., Singh, A., & Chand, J. (2015). Quality traits analysis and protein profiling of field pea (Pisum sativum) germplasm from Himalayan region. Food Chemistry, 172, 528-536. http://dx.doi.org/10.1016/j.foodchem.2014.09.108
Singh, N., Kaur, N., Chand, J., & Kumar, S. (2010). Diversity in seed and flour properties in field pea (Pisum sativum) germplasm. Food Chemistry, 122(3), 518-525. http://dx.doi.org/10.1016/j.foodchem.2010.02.064
Sozer, N., Holopainen-Mantila, U., & Poutanen, K. (2017). Traditional and new food uses of pulses. Cereal Chemistry, 94(1), 66-73. http://dx.doi.org/10.1094/CCHEM-04-16-0082-FI
Tulbek, M. C., Lam, R. S. H., Wang, Y. C., Asavajaru, P., & Lam, A. (2017). Pea: A sustainable vegetable protein crop. In S. Nadathur, J. P. Wanasundara, & L. Scanlin (Eds.), Sustainable Protein Sources (pp. 145-164). Academic Press. http://dx.doi.org/10.1016/B978-0-12-802778-3.00009-3
Tzitzikas, E. N., Vincken, J. P., De Groot, J., Gruppen, H., & Visser, R. G. F. (2006). Genetic variation in pea seed globulin composition. Journal of Agricultural and Food Chemistry, 54(2), 425-433. http://dx.doi.org/10.1021/jf0519008
Wang, N., Daun, J. K., & Malcolmson, L. J. (2003). Relationship between physicochemical and cooking properties, and effects of cooking on antinutrients, of yellow field peas (Pisum sativum). Journal of the Science of Food and Agriculture, 83(12), 1228-1237. http://dx.doi.org/10.1002/jsfa.1531
Wang, N., Hatcher, D. W., Warkentin, T. D., & Toews, R. (2010). Effect of cultivar and environment on physicochemical and cooking characteristics of field pea (Pisum sativum). Food Chemistry, 118(1), 109-115. http://dx.doi.org/10.1016/j.foodchem.2009.04.082
Wang, N., & Castonguay, G. (2014). Effect of maturity on physicochemical and cooking characteristics in yellow peas (Pisum sativum). Canadian Journal of Plant Science, 94(3), 565-571. http://dx.doi.org/10.4141/cjps2012-331
Yacin, I., Ozarslan, C., & Akbas, T. (2007). Physical properties of pea (Pisum sativum) seed. Journal of Food Engineering, 79(2), 731-735. http://dx.doi.org/10.1016/j.jfoodeng.2006.02.039