Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio

Aspectos tecnológicos de la microencapsulación de compuestos bioactivos en alimentos mediante secado por aspersión

Universidad de Caldas
Universidad de Caldas
Universidad de Caldas
biocompuestos encapsulación estabilidad secado tecnología de alimentos

Resumen

El secado por aspersión es una técnica de amplio uso en la industria de alimentos para la obtención de productos en polvo a partir de la formación de gotas pequeñas dentro de una cámara de secado a temperatura elevada. Esta técnica de secado se ha aplicado a la formación de microcápsulas que albergan compuestos funcionales con el objetivo de suplementar un alimento mediante la adición de uno o varios ingredientes esenciales que pueden proporcionar beneficios para la salud humana. En esta revisión, se recopiló información sobre el proceso de microencapsulación de secado por aspersión: el principio y las condiciones de operación, los materiales pared utilizados, su influencia sobre las propiedades fisicoquímicas y funcionales de las microcápsulas obtenidas, los problemas de calidad en las microcápsulas, los aspectos de liberación de los compuestos bioactivos y los estudios relacionados con la microencapsulación de vitaminas, minerales, sustancias oleosas, antioxidantes y microorganismos probióticos. En total, se consultaron 78 estudios publicados entre los años 2010 y 2020 en bases de datos de alto impacto en la comunidad científica. Se observó que algunas combinaciones de compuestos bioactivos, con propiedades fisicoquímicas y funcionales definidas, dan origen a nuevos alimentos funcionales que mejoran en alto grado la salud de quienes los consumen con frecuencia. Los adelantos en el área de la microencapsulación mediante secado por aspersión son numerosos y coinciden con las nuevas tendencias de desarrollo e innovación en el ámbito alimentario.

Cardona Tangarife, D. P., Patiño Arias, L. P., & Ormaza Zapata, A. M. (2021). Aspectos tecnológicos de la microencapsulación de compuestos bioactivos en alimentos mediante secado por aspersión. Ciencia Y Tecnología Agropecuaria, 22(1), 1–21. https://doi.org/10.21930/rcta.vol22_num1_art:1899

Arslan, S., Erbas, M., Tontul, I., & Topuz, A. (2015). Microencapsulation of probiotic Saccharomyces cerevisiae var. boulardii with different wall materials by spray-drying. LWT - Food Science and Technology, 63(1), 685-690. https://doi.org/10.1016/j.lwt.2015.03.034

Badui, S. (2013). Química de los alimentos (5th ed.). Pearson Educación.

Banožić, M., Babić, J., & Jokić, S. (2020). Recent advances in extraction of bioactive compounds from tobacco industrial waste-a review. Industrial Crops and Products, 144, 112009. https://doi.org/10.1016/j.indcrop.2019.112009

Caliskan, G., & Dirim S. (2016). The effect of different drying processes and the amounts of maltodextrin addition on the powder properties of sumac extract powders. Powder Technology, 287, 308-314. https://doi.org/10.1016/j.powtec.2015.10.019

Campelo, P., Sanches, E., De Barros Fernandes, R., Botrel, D., & Borges, S. (2018). Stability of lime essential oil microparticles produced with protein-carbohydrate blends. Food Research International, 105, 936-944. https://doi.org/10.1016/j.foodres.2017.12.034

Cano-Chauca, M., Stringheta, P., Barbosa, S., Fonseca, K., & Silva, F. (2011). Influence of microstructure on the hygroscopic behaviour of mango powdered obtained by spray-drying. African Journal of Food Science, 5, 148-155.

Caparino, O., Tang, J., Nindo, C., Sablani, S., Powers, J., & Fellman, J. (2012). Effect of drying methods on the physical properties and microstructures of mango (Philippine “Carabao” var.) powder. Journal of Food Engineering, 111(1), 135-148. https://doi.org/10.1016/j.jfoodeng.2012.01.010

Carlan, I., Estevinho, B., & Rocha, F. (2017). Study of microencapsulation and controlled release of modified chitosan microparticles containing vitamin B12. Powder Technology, 318, 162-169. https://doi.org/10.1016/j.powtec.2017.05.041

Carneiro, H., Tonon, R., Grosso, C., & Hubinger, M. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray-drying using different combinations of wall materials. Journal of Food Engineering, 115(4), 443-451. https://doi.org/10.1016/j.jfoodeng.2012.03.033

Cassanego, E., Da Silva, T., Goulart, J., De Oliveira, G., & Sant’Anna, E. (2015). Lactobacillus paracasei isolated from grape sourdough: acid, bile, salt, and heat tolerance after spray-drying with skim milk and cheese whey. European Food Research and Technology, 240, 977-984. https://doi.org/10.1007/s00217-014-2402-x

Chong, P., Yusof, Y., Aziz, M., Nazli, N., Chin, N., & Muhammad, S. (2014). Effects of spray-drying conditions of microencapsulation of Amaranthus gangeticus extract on drying behaviour. Agriculture and Agricultural Science Procedia, 2, 33-42. https://doi.org/10.1016/j.aaspro.2014.11.006

Contreras-Rodríguez, O., Mata, F., Verdejo-Román, J., Ramírez-Bernabé, R., Moreno, D., Vilar-López, R., Soriano-Mas, C., & Verdejo-García, A. (2020). Neural-based valuation of functional foods among lean and obese individuals. Nutrition Research, 78, 27-35. https://doi.org/10.1016/j.nutres.2020.03.006

Cortés-Rojas, D., Fernandes, C., & Oliveira, W. (2015). Optimization of spray-drying conditions for production of Bidens pilosa L. dried extract. Chemical Engineering Research and Design, 93, 366-376. https://doi.org/10.1016/j.cherd.2014.06.010

Costa, S., Souza, B., Martin, A., Bagnara, F., Ragadalli, S., & Costa, A. (2015). Drying by spray-drying in the food industry: micro-encapsulation, process parameters and main carriers used. African Journal of Food Science, 9(9), 462-470. https://doi.org/10.5897/AJFS2015.1279

Da Silva, F., Rodrigues, C., De Alencar, S., Thomazini, M., De Carvalho, J., Pittia, P., & Favaro-Trindade, C. (2013). Assessment of production efficiency, physicochemical properties and storage stability of spray-dried propolis, a natural food additive, using gum Arabic and OSA starch-based carrier systems. Food and Bioproducts Processing, 91(1), 28-36. https://doi.org/10.1016/j.fbp.2012.08.006

Daza, L., Fujita, A., Fávaro-Trinda, C., Rodrigues-Ract, J., Granato, D., & Genovese, M. (2016). Effect of spray-drying conditions on the physical properties of Cagaita (Eugenia dysenterica DC.) fruit extracts. Food and Bioproducts Processing, 97, 20-29. https://doi.org/10.1016/j.fbp.2015.10.001

De Araújo-Uribe, N., Ruiz-Villadiego, O., Montoya-Campuzano, O., & Gutiérrez-Ramírez, L. (2018). Viability of probiotic bacteria Bacillus polymyxa, Bacillus megaterium and Lactobacillus delbruekii subsp. bulgaricus microencapsulated under the spray-drying technique. DYNA, 85(204), 272-276. https://doi.org/10.15446/dyna.v85n204.61644

De Souza, V., Thomazini, M., De Carvalho, J., Fávaro-Trindade, C. (2015). Effect of spray-drying on the physicochemical properties and color stability of the powdered pigment obtained from vinification byproducts of the Bordo grape (Vitis labrusca). Food and Bioproducts Processing, 93, 39-50. https://doi.org/10.1016/j.fbp.2013.11.001

Dhakal, S., & He, J. (2020). Microencapsulation of vitamins in food applications to prevent losses in processing and storage: a review. Food Research International, 137, 109326. https://doi.org/10.1016/j.foodres.2020.109326

Edris, A., Kalemba, D., Adamiec, J., & Piątkowski, M. (2016). Microencapsulation of Nigella sativa oleoresin by spray-drying for food and nutraceutical applications. Food Chemistry, 204, 326-333. https://doi.org/10.1016/j.foodchem.2016.02.143

Estevinho, B., Carlan, I., Blaga, A., & Rocha, F. (2016). Soluble vitamins (vitamin B12 and vitamin C) microencapsulated with different biopolymers by a spray-drying process. Powder Technology, 289, 71-78. https://doi.org/10.1016/j.powtec.2015.11.019

Fang, Z., & Bhandari, B. (2011). Effect of spray-drying and storage on the stability of bayberry polyphenols. Food Chemistry, 129(3), 1139-1147. https://doi.org/10.1016/j.foodchem.2011.05.093

Favaro-Trindade, C., Patel, B., Silva, M., Comunian, T., Federici, E., Jones, O., & Campanella, O. (2020). Microencapsulation as a tool to producing an extruded functional food. LWT, 128, 109433. https://doi.org/10.1016/j.lwt.2020.109433

Fernandes, R., Borges, S., Silva, E., Da Silva, Y., De Souza, H., Do Carmo, E., De Oliveira, C., Yoshida, M., & Botrel, D. (2016). Study of ultrasound-assisted emulsions on microencapsulation of ginger essential oil by spray-drying. Industrial Crops and Products, 94, 413-423. https://doi.org/10.1016/j.indcrop.2016.09.010

Gil, M., Alzate, L., Sánchez-Camargo, A., & Millán, L. (2011). Secado por aspersión: una alternativa para la conservación de los compuestos bioactivos y aromáticos del extracto de ajo (Allium sativum L.). Revista Lasallista de Investigación, 8(2), 40-52. http://repository.lasallista.edu.co:8080/ojs/index.php/rldi/article/view/25/14

Gómez-Aldapa, C., Castro-Rosas, J., Rangel-Vargas, E., Navarro-Cortez, R., Cabrera-Canales, Z., Díaz-Batalla, L., Martínez-Bustos, F., Guzmán-Ortiz, F., & Falfan-Cortes, R. (2019). A modified Achira (Canna indica L.) starch as a wall material for the encapsulation of Hibiscus sabdariffa extract using spray-drying. Food Research International, 119, 547-553. https://doi.org/10.1016/j.foodres.2018.10.031

Goula, A., & Adamopoulos, K. (2010). A new technique for spray-drying orange juice concentrate. Innovative Food Science & Emerging Technologies, 11(2), 342-351. https://doi.org/10.1016/j.ifset.2009.12.001

Haider, C., Niederreiter, G., Palzer, S., Hounslow, M., & Salman, A. (2018). Unwanted agglomeration of industrial amorphous food powder from a particle perspective. Chemical Engineering Research and Design, 132, 1160-1169. https://doi.org/10.1016/j.cherd.2018.02.023

Hashib, S., Rahman, N., Suzihaque, M., Ibrahim, U., & Hanif, N. (2015). Effect of slurry concentration and inlet temperature towards glass temperature of spray dried pineapple powder. Procedia - Social and Behavioral Sciences, 195, 2660-2667. https://doi.org/10.1016/j.sbspro.2015.06.472

Hategekimana, J., Masamba, K., Ma, J., & Zhong, F. (2015). Encapsulation of vitamin E: effect of physicochemical properties of wall material on retention and stability. Carbohydrate Polymers, 124, 172-179. https://doi.org/10.1016/j.carbpol.2015.01.060

Hernández, M., Cuvelier, M.-E., & Turchiuli, C. (2015). Design of liquid emulsions to structure spray dried particles. Journal of Food Engineering, 167, Part B, 99-105. https://doi.org/10.1016/j.jfoodeng.2015.07.036

Huang, S., Méjean, S., Rabah, H., Dolivet, A., Le Loir, Y., Chen, X., Jan, G., Jeantet, R., & Schuck, P. (2017). Double use of concentrated sweet whey for growth and spray-drying of probiotics: towards maximal viability in pilot scale spray dryer. Journal of Food Engineering, 196, 11-17. https://doi.org/10.1016/j.jfoodeng.2016.10.017

Islam, M., Kitamura, Y., Yamano, Y., & Kitamura, M. (2016). Effect of vacuum spray-drying on the physicochemical properties, water sorption and glass transition phenomenon of orange juice powder. Journal of Food Engineering, 169, 131-140. https://doi.org/10.1016/j.jfoodeng.2015.08.024

Lisboa, H., Duarte, M., & Cavalcanti-Mata, M. (2018). Modeling of food drying processes in industrial spray dryers. Food and Bioproducts Processing, 107, 49-60. https://doi.org/10.1016/j.fbp.2017.09.006

Liu, W., Chen, X., Cheng, Z., & Selomulya, C. (2016). On enhancing the solubility of curcumin by microencapsulation in whey protein isolate via spray-drying. Journal of Food Engineering, 169, 189-195. https://doi.org/10.1016/j.jfoodeng.2015.08.034

Lopera, S. C., & Gallardo, C. C. (2010). Estudio de la fotodegradación de ácido fólico encapsulado en microesferas de goma arábiga y maltodextrina. Revista Cubana de Farmacia, 44(4), 443-455.

Lucas, J., Ralaivao, M., Estevinho, B., & Rocha, F. (2020). A new approach for the microencapsulation of curcumin by a spray-drying method, in order to value food products. Powder Technology, 362, 428-435. https://doi.org/10.1016/j.powtec.2019.11.095

Luna-Guevara, J., Ochoa-Velasco, C., Hernández-Carranza, P., & Guerrero-Beltrán, J. (2017). Microencapsulation of walnut, peanut and pecan oils by spray-drying. Food Structure, 12, 26-32. https://doi.org/10.1016/j.foostr.2017.04.001

Martín, M., Lara-Villoslada, F., Ruiz, M., & Morales, M. (2015). Microencapsulation of bacteria: a review of different technologies and their impact on the probiotic effects. Innovative Food Science & Emerging Technologies, 27, 15-25. https://doi.org/10.1016/j.ifset.2014.09.010

Martínez, M., Curti, M., Roccia, P., Llabot, J., Penci, M., Bodoira, R., & Ribotta, P. (2015). Oxidative stability of walnut (Juglans regia L.) and chia (Salvia hispanica L.) oils microencapsulated by spray-drying. Powder Technology, 270, Part A, 271-277. https://doi.org/10.1016/j.powtec.2014.10.031

Medina-Torres, L., García-Cruz, E., Calderas, F., González, R., Sánchez-Olivares, G., Gallegos-Infante, J., Rocha-Guzmán, N., & Rodríguez-Ramírez, J. (2013). Microencapsulation by spray-drying of gallic acid with nopal mucilage (Opuntia ficus indica). LWT - Food Science and Technology, 50(2), 642-650. https://doi.org/10.1016/j.lwt.2012.07.038

Medina-Torres, L., Núñez-Ramírez, D., Calderas, F., González-Laredo, R., Minjares-Fuentes, R., Valadez-García, M., Bernad-Bernad, M., & Manero, O. (2019). Microencapsulation of gallic acid by spray-drying with aloe vera mucilage (Aloe barbadensis Miller) as wall material. Industrial Crops and Products, 138, 111461. https://doi.org/10.1016/j.indcrop.2019.06.024

Mohammadian, M., Waly, M., Moghadam, M., Emam-Djomeh, Z., Salami, M., & Moosavi-Movahedi, A. (2020). Nanostructured food proteins as efficient systems for the encapsulation of bioactive compounds. Food Science and Human Wellness. https://doi.org/10.1016/j.fshw.2020.04.009

Morales-Guzmán, J, Medina-Torres, M. G., Andrade-Esquivel, E., Guzmán-Maldonado S. H., & Hernández-López, D. (2010). Evaluación de los efectos del secado por aspersión sobre los compuestos fitoquímicos-funcionales y características fisicoquímicas en encapsulados de zarzamora (Rubus spp). XII Congreso Nacional de Ciencia y Tecnología de los Alimentos (Universidad de Guanajuato, Universidad Autónoma de Nuevo León), Guanajuato, México. https://bit.ly/3gEBCQA

Morales-Medina, R., Tamm, F., Guadix, A., Guadix, E., & Drusch, S. (2016). Functional and antioxidant properties of hydrolysates of sardine (S. pilchardus) and horse mackerel (T. mediterraneus) for the microencapsulation of fish oil by spray-drying. Food Chemistry, 194, 1208-1216. https://doi.org/10.1016/j.foodchem.2015.08.122

Mujumdar, A. (Ed.). (2014). Handbook of industrial drying (4th ed.). CRC Press.

Murugesan, R., & Orsat, V. (2011). Spray-drying for the production of nutraceutical ingredients. A review. Food and Bioprocess Technology, 5(1), 3-14. https://doi.org/10.1007/s11947-011-0638-z

Oberoi, D., & Sogi, D. (2015). Effect of drying methods and maltodextrin concentration on pigment content of watermelon juice powder. Journal of Food Engineering, 165, 172-178. https://doi.org/10.1016/j.jfoodeng.2015.06.024

Ozkan, G., Franco, P., De Marco, I., Xiao, J., & Capanoglu, E. (2019). A review of microencapsulation methods for food antioxidants: principles, advantages, drawbacks and applications. Food Chemistry, 272, 494-506. https://doi.org/10.1016/j.foodchem.2018.07.205

Parra, R. (2010). Revisión: microencapsulación de alimentos. Revista Facultad Nacional de Agronomía Medellín, 63(2), 5669-5684. https://revistas.unal.edu.co/index.php/refame/article/view/25055/37055

Paudel, A., Worku, Z., Meeus, J., Guns, S., & Van den Mooter, G. (2013). Manufacturing of solid dispersions of poorly water soluble drugs by spray-drying: formulation and process considerations. International Journal of Pharmaceutics, 453(1), 253-284. https://doi.org/10.1016/j.ijpharm.2012.07.015

Pellicer, J., Fortea, M., Trabal, J., Rodríguez-López, M., Carazo-Díaz, C., Gabaldón, J., & Núñez-Delicado, E. (2018). Optimization of the microencapsulation of synthetic strawberry flavour with different blends of encapsulating agents using spray-drying. Powder Technology, 338, 591-598. https://doi.org/10.1016/j.powtec.2018.07.080

Poozesh, S., & Bilgili, E. (2019). Scale-up of pharmaceutical spray-drying using scale-up rules: a review. International Journal of Pharmaceutics, 562, 271-292. https://doi.org/10.1016/j.ijpharm.2019.03.047

Rajabi, H., Ghorbani, M., Jafari, S., Mahoonak, A., & Rajabzadeh, G. (2015). Retention of saffron bioactive components by spray-drying encapsulation using maltodextrin, gum Arabic and gelatin as wall materials. Food Hydrocolloids, 51, 327-337. https://doi.org/10.1016/j.foodhyd.2015.05.033

Ramakrishnan, Y., Adzahan, N., Yusof, Y., & Muhammad, K. (2018). Effect of wall materials on the spray-drying efficiency, powder properties and stability of bioactive compounds in tamarillo juice microencapsulation. Powder Technology, 328, 406-414. https://doi.org/10.1016/j.powtec.2017.12.018

Rezende, Y., Nogueira, J., & Narain, N. (2018). Microencapsulation of extracts of bioactive compounds obtained from acerola (Malpighia emarginata DC) pulp and residue by spray and freeze drying: chemical, morphological and chemometric characterization. Food Chemistry, 254, 281-291. https://doi.org/10.1016/j.foodchem.2018.02.026

Ribeiro, A., Shahgol, M., Estevinho, B., & Rocha, F. (2020). Microencapsulation of vitamin A by spray-drying, using binary and ternary blends of gum Arabic, starch and maltodextrin. Food Hydrocolloids, 108, 106029. https://doi.org/10.1016/j.foodhyd.2020.106029

Rodríguez-Huezo, M., Estrada-Fernández, A., García-Almendárez, B., Ludeña-Urquizo, F., Campos-Montiel, R., & Pimentel-González, D. (2014). Viability of Lactobacillus plantarum entrapped in double emulsion during Oaxaca cheese manufacture, melting and simulated intestinal conditions. LWT - Food Science and Technology, 59(2), Part 1, 768-773. https://doi.org/10.1016/j.lwt.2014.07.004

Rodríguez-Restrepo, Y., Giraldo, G., & Rodríguez-Barona, S. (2017). Solubility as a fundamental variable in the characterization of wall material by spray-drying of food components: application to microencapsulation of Bifidobacterium animalis subsp. lactis. Journal of Food Process Engineering, 40(6), e12557. https://doi.org/10.1111/jfpe.12557

Rouf, S., Jan, T., & Sharma, P. (2018). Non-dairy probiotics – An emerging trend in health care products. International Journal of Current Microbiology and Applied Sciences, 7(10), 131-145. https://doi.org/10.20546/ijcmas.2018.710.015

Saifullah, Md., Islam, M., Ferdowsi, R., Rahman M., & Vuong, V. (2019). Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: a critical review. Trends in Food Science & Technology, 86, 230-251. https://doi.org/10.1016/j.tifs.2019.02.030

Salminen, H., Ankenbrand, J., Zeeb, B., Badolato G., Schäfer, C., Kohlus, R., & Weiss, J. (2019). Influence of spray-drying on the stability of food-grade solid lipid nanoparticles. Food Research International, 119, 741-750. https://doi.org/10.1016/j.foodres.2018.10.056

Santos, S., Rodrigues, L., Costa, S., & Madrona, G. (2019). Antioxidant compounds from blackberry (Rubus fruticosus) pomace: microencapsulation by spray-dryer and pH stability evaluation. Food Packaging and Shelf Life, 20, 100177. https://doi.org/10.1016/j.fpsl.2017.12.001

Shishir, M., Taip, F., Aziz, N., & Talib, R. (2014). Physical properties of spray-dried pink guava (Psidium guajava) powder. Agriculture and Agricultural Science Procedia, 2, 74-81. https://doi.org/10.1016/j.aaspro.2014.11.011

Solanki, H., Pawar, D., Shah, D., Prajapati, V., Jani, G., Mulla, A., & Thakar, P. (2013). Development of microencapsulation delivery system for long-term preservation of probiotics as biotherapeutics agent. BioMed Research International, 2013, 620719. https://doi.org/10.1155/2013/620719

Talón, E., Lampi, A., Vargas, M., Chiralt, A., Jouppila, K., & González-Martínez, C. (2019). Encapsulation of eugenol by spray-drying using whey protein isolate or lecithin: release kinetics, antioxidant and antimicrobial properties. Food Chemistry, 295, 588-598. https://doi.org/10.1016/j.foodchem.2019.05.115

Tan, S., Kha, T., Parks, S., Stathopoulos, C., & Roach, P. (2015). Effects of the spray-drying temperatures on the physiochemical properties of an encapsulated bitter melon aqueous extract powder. Powder Technology, 281, 65-75. https://doi.org/10.1016/j.powtec.2015.04.074

Tan, S., Zhong, C., & Langrish, T. (2020). Encapsulation of caffeine in spray-dried micro-eggs for controlled release: The effect of spray-drying (cooking) temperature. Food Hydrocolloids, 108, 105979. https://doi.org/10.1016/j.foodhyd.2020.105979

Tavares, L., & Zapata, C. (2019). Encapsulation of garlic extract using complex coacervation with whey protein isolate and chitosan as wall materials followed by spray-drying. Food Hydrocolloids, 89, 360-369. https://doi.org/10.1016/j.foodhyd.2018.10.052

Tontul, I., & Topuz, A. (2017). Review. Spray-drying of fruit and vegetable juices: effect of drying conditions on the product yield and physical properties. Trends in Food Science & Technology, 63, 91-102. https://doi.org/10.1016/j.tifs.2017.03.009

Tripathi, M., & Giri, S. (2014). Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods, 9, 225-241. https://doi.org/10.1016/j.jff.2014.04.030

Vishnu, K., Chatterjee, N., Ajeeshkumar, K., Lekshmi, R., Tejpal, C., Mathew, S., & Ravishankar, C. (2017). Microencapsulation of sardine oil: application of vanillic acid grafted chitosan as a bio-functional wall material. Carbohydrate Polymers, 174, 540-548. https://doi.org/10.1016/j.carbpol.2017.06.076

Wang, T., Soyama, S., & Luo, Y. (2016). Development of a novel functional drink from all natural ingredients using nanotechnology. LWT, 73, 458-466. https://doi.org/10.1016/j.lwt.2016.06.050

Wei, Y., Woo, M., Selomulya, C., Wu, W., Xiao, J., & Chen, J. (2019). Numerical simulation of mono-disperse droplet spray dryer under the influence of nozzle motion. Powder Technology, 355, 93-105. https://doi.org/10.1016/j.powtec.2019.07.017

Ye, Q., Georges, N., & Selomulya, C. (2018). Microencapsulation of active ingredients in functional foods: from research stage to commercial food products. Trends in Food Science & Technology, 78, 167-179. https://doi.org/10.1016/j.tifs.2018.05.025

Yingngam, B., Kacha, W., Rungseevijitprapa, W., Sudta, P., Prasitpuriprecha, C., & Brantner, A. (2019). Response surface optimization of spray-dried citronella oil microcapsules with reduced volatility and irritation for cosmetic textile uses. Powder Technology, 355, 372-385. https://doi.org/10.1016/j.powtec.2019.07.065

Yonekura, L., Sun, H., Soukoulis, C., & Fisk, I. (2014). Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fiber by spray-drying: technological characterization, storage stability and survival after in vitro digestion. Journal of Functional Foods, 6, 205-214. https://doi.org/10.1016/j.jff.2013.10.008

Yousefi, S., Emam-Djomeh, Z., & Mousavi, S. (2011). Effect of carrier type and spray-drying on the physicochemical properties of powdered and reconstituted pomegranate juice (Punica granatum L.). Journal of Food Science and Technology, 48(6), 677-684. https://doi.org/10.1007/s13197-010-0195-x

Zhang, C., Khoo, S., Chen, X., & Quek, S. (2020). Microencapsulation of fermented noni juice via micro-fluidic-jet spray-drying: evaluation of powder properties and functionalities. Powder Technology, 361, 995-1005. https://doi.org/10.1016/j.powtec.2019.10.098

Zhang, J., Wen, C., Zhang, H., Duan, Y., & Ma, H. (2020). Recent advances in the extraction of bioactive compounds with subcritical water: a review. Trends in Food Science & Technology, 95, 183-195. https://doi.org/10.1016/j.tifs.2019.11.018

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

2367 | 1516 | 2388 | 226 | 18




 

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.