Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio
Publicado: 2022-06-01

Efecto de la progesterona plasmática en la competencia para el desarrollo embrionario in vitro de vacas Bos taurus taurus y Bos taurus indicus

Universidad de Santander
Universidade Estadual do Norte Fluminense
Embrapa Gado de Leite
Universidade de Vassouras
Embrapa Gado de Leite
Empresa de Pesquisa Agropecuária do Estado do Rio de Janeiro
aspiración folicular ganado bovino folículos ováricos norgestomet onda folicular producción de embriones in vitro

Resumen

Diversos estudios han comprobado que la progesterona tiene un efecto directo en la calidad ovocitaria y el desarrollo inicial embrionario. El objetivo de este estudio fue evaluar el efecto de la concentración de la progesterona (P4) plasmática en el desarrollo de embriones in vitro en vacas de raza Bos taurus taurus (Holstein) y Bos taurus indicus (Gyr). Se utilizaron vacas Holstein y Gyr multíparas, presincronizadas con la aplicación de dos dosis de D-cloprostenol con intervalo de once días. Posteriormente, se distribuyeron en uno de tres grupos experimentales inducidos a diferentes niveles plasmáticos de progesterona. El grupo control fue sincronizado utilizando únicamente D-cloprostenol sin progesterona exógena, el grupo progesterona baja recibió un implante auricular de norgestomet de segundo uso y al grupo progesterona alta se le aplicaron dos implantes auriculares de norgestomet nuevos. Los resultados evidencian que la concentración plasmática de progesterona fue significativamente diferente (P < 0,05) tanto para las vacas Holstein (0,22 ± 0,15, 2,23 ± 0,17 y 5,32 ± 0,22 ng/mL) como para las vacas Gyr (0,24 ± 0,19, 2,05 ± 0,17, 4,85 ± 0,20 ng/mL) entre los grupos control, progesterona baja y progesterona alta, respectivamente. Las vacas Gyr presentaron diferencia (P < 0,05) en la tasa de clivaje del grupo progesterona baja en relación con los grupos control y progesterona alta (87,9 % ± 0,11 vs 77,5 % ± 0,13 y 76,4 % ± 0,10, respectivamente) y en la variable tasa de blastocistos del grupo progesterona baja (48,3 % ± 0,16) en relación con el grupo control (35,8 % ± 0,10) y el grupo progesterona alta (30,4 % ± 0,20). Se concluye que la progesterona tuvo efecto sobre el desarrollo embrionario en vagas de raza Gyr, el cual no se evidenció en las vacas de raza Holstein.

Narváez Bedoya, H. J., R. . da Silva Fontes, B. Campos de Carvalho, R. Varella Serapião, C. S. . . Oliveira, y A. J. dos Reis Camargo. «Efecto De La Progesterona plasmática En La Competencia Para El Desarrollo Embrionario in Vitro De Vacas Bos Taurus Taurus Y Bos Taurus Indicus». Ciencia Y Tecnología Agropecuaria, vol. 23, n.º 2, junio de 2022, doi:10.21930/rcta.vol23_num2_art:2003.

Abreu, F. M., Coutinho da Silva, M. A., Cruppe, L. H., Mussard, M. L., Bridges, G. A., Harstine, B. R., Smith, G. D., Geary, T. W., & Day, M. L. (2018). Role of progesterone concentrations during early follicular development in beef cattle: I. Characteristics of LH secretion and oocyte quality. Animal Reproduction Science, 196, 59-68. https://doi.org/10.1016/j.anireprosci.2018.06.020

Adams, G. P., Jaiswal, R., Singh, J., & Malhi, P. (2008). Progress in understanding ovarian follicular dynamics in cattle. Theriogenology, 69(1), 72-80. https://doi.org/10.1016/j.theriogenology.2007.09.026

Al-Katanani, Y., Paula-Lopes, F., & Hansen, P. (2002). Effect of season and exposure to heat stress on oocyte competence in Holstein cows. Journal of Dairy Science, 85(2), 390-396. https://doi.org/10.3168/jds.S0022-0302(02)74086-1

Boediono, A., Rajamahendran, R., Saha, S., Sumantri, C., & Suzuki, T. (1995). Effect of the presence of a CL in the ovary on oocyte number, cleavage rate and blastocyst production in vitro in cattle. Theriogenology, 43(1), 169. https://doi.org/10.1016/0093-691X(95)92323-2

Cerri, R. L. A., Chebel, R. C., Rivera, F., Narciso, C. D., Oliveira, R. A., Amstalden, M., Baez-Sandoval, G. M., Oliveira, L. J., Tatcher, W. W., & Santos, J. E. P. (2011). Concentration of progesterone during the development of the ovulatory follicle: II. Ovarian and uterine responses. Journal of Dairy Science, 94, 3352-3365. https://doi.org/10.3168/jds.2010-3735

Chaubal, S. A., Ferre, L. B., Molina, J. A., Faber, D. C., Bols, P. E. J., Rezamand, P., Tian, X., & Yang, X. (2007). Hormonal treatments for increasing the oocyte and embryo production in an OPU–IVP system. Theriogenology, 67(4), 719-728. https://doi.org/10.1016/j.theriogenology.2006.07.022

Chauhan, M. S., Nadir, S., Bailey, T. L., Pryor, A. W., Butler, S. P., Notter, D. R., & Gwazdauskas, F. C. (1999). Bovine follicular dynamics, oocyte recovery, and development of oocytes microinjected with a green fluorescent protein construct. Journal of Dairy Science, 82, 918-926. https://www.journalofdairyscience.org/article/S0022-0302(99)75310-5/pdf

Chian, R. C., Chung, J. T., Downey, B. R., & Tan, S. L. (2002). Maturational and developmental competence of immature oocytes retrieved from bovine ovaries at different phases of folliculogenesis. Reproductive Biomedicine Online, 4(2), 127-132. https://www.rbmojournal.com/article/S1472-6483(10)61929-3/pdf

De Wit, A. A. C., Wurth, Y. A., & Kruip, T. A. M. (2000). Effect of ovarian phase and follicle quality on morphology and developmental capacity of the bovine cumulus-oocyte complex. Journal of Animal Science, 78(5), 1277-1283. https://doi.org/10.2527/2000.7851277x

El-Sherry, T. M., Matsui, M., Kida, K., Miyamoto, A., Megahed, G. A., Shehata, S. H., & Miyake, Y.-I. (2010). Ovarian stimulation with follicle-stimulating hormone under increasing or minimal concentration of progesterone in dairy cows. Theriogenology, 73(4), 488-495. https://doi.org/10.1016/j.theriogenology.2009.09.031

Evans, A. C. O., Mossa, F., Walsh, S. W., Scheetz, D., Jimenez-Krassel, F., Ireland, J. L. H., Smith, G. W., & Ireland, J. J. (2012). Effects of maternal environment during gestation on ovarian folliculogenesis and consequences for fertility in bovine offspring. Reproduction in Domestic Animals, 47(s4), 31-37. https://doi.org/10.1111/j.1439-0531.2012.02052.x

Fair, T., & Lonergan, P. (2012). The role of progesterone in oocyte acquisition of developmental competence. Reproduction in Domestic Animals, 47(s4), 142-147. https://doi.org/10.1111/j.1439-0531.2012.02068.x

Ferreira, R. M., Ayres, H., Maio, J. R. G., & Baruselli, P. S. (2009). Day of follicular wave emergence of Holstein heifers and cows submitted to protocols for synchronization of follicular wave emergence using or not injectable progesterone. Animal Reproduction, 6, 259. https://www.researchgate.net/publication/284773193_Day_of_follicular_wave_emergence_of_Holstein_heifers_and_cows_submitted_to_protocols_for_synchronization_of_follicular_wave_emergence_using_or_not_injectable_progesterone/link/573b93d308aea45ee840668e/download

Fonseca, F. A., Britt, J. H., McDaniel, B. T., Wilk, J. C., & Rakes, A. H. (1983). Reproductive traits of Holsteins and Jerseys, effects of age, milk yield, and clinical abnormalities on involution of cervix and uterus, ovulation, estrous cycles, detection of estrus, conception rate, and days open. Journal of Dairy Science, 66, 1128-1147. https://www.journalofdairyscience.org/article/S0022-0302(83)81910-9/pdf

Friberg, P. A., Larsson, D. G. J., & Billig, H. (2009). Dominant role of nuclear progesterone receptor in the control of rat periovulatory granulosa cell apoptosis. Biology of Reproduction, 80(6), 1160-1167. https://doi.org/10.1095/biolreprod.108.073932

Garcés Giraldo, L. F., & Giraldo Zuluaga, C. (2012). Bioética en la experimentación científica con animales: Cuestión de reglamentación o de actitud humana. Revista Lasallista de Investigación, 9(1), 159-166. https://www.redalyc.org/pdf/695/69524955012.pdf

Gimenes, L. U. (2010). Taxa de recuperação in vivo e competência in vitro de oócitos bubalinos, zebuínos, e taurinos aspirados em diferentes fases da onda de crescimento folicular. (Tesis de Doctorado, Universidade de São Paulo, São Paulo, Brasil). Repositorio USP. https://teses.usp.br/teses/disponiveis/10/10131/tde-20012011-115005/publico/Lindsay_Unno_Gimenes.pdf

Hasler, J. F. (1998). The current status of oocyte recovery, in vitro embryo production, and embryo transfer in domestic animals, with an emphasis on the bovine. Journal of Animal Science, 76(3), 52-74. https://doi.org/10.2527/1998.76suppl_352x

Hendriksen, P. J. M., Steenweg, W. N. M., Harkema, J. C., Merton, J. S., Bevers, M. M., Vos, P. L. A. M., & Dieleman, S. J. (2004). Effect of different stages of the follicular wave on in vitro developmental competence of bovine oocytes. Theriogenology, 61(5), 909-920. https://doi.org/10.1016/S0093-691X(03)00278-4

Kesler, D. J., Dyson, T. S., Summers, R. N., Steckler, T. L., & Nash, T. G. (1997). Effect prostaglandin F2α treatment before norgestomet and estradiol valerate treatment on regression, formation, and function of corpora luteain beef heifers. Animal Reproduction Science, 47(4), 281-289. https://doi.org/10.1016/S0378-4320(97)00023-7

Kesler, D. J., Favero, R. J., & Troxel, T. R. (1995). A comparison of hydron and silicone implants in the bovine norgestomet and estradiol valerate estrus synchronization procedure. Drug Development and Industrial Pharmacy, 21(4), 475-485. https://doi.org/10.3109/03639049509026636

Lonergan, P. (2011). Influence of progesterone on oocyte quality and embryo development in cows. Theriogenology, 76(9), 1594-1601. https://doi.org/10.1016/j.theriogenology.2011.06.012

Lonergan, P., Forde, N., & Spencer, T. (2016). Role of progesterone in embryo development in cattle. Reproduction, Fertility and Development, 28(2), 66-74. http://dx.doi.org/10.1071/RD15326

Lonergan, P., Woods, A., Fair, T., Carter, F., Rizos, D., Ward, F., Quinn, K., & Evans, A. (2007). Effect of embryo source and recipient progesterone environment on embryo development in cattle. Reproduction, Fertility and Development, 19, 861-868. https://doi.org/10.1071/RD07089

Lonergan, P., & Sánchez, J. M. (2020). Symposium review: Progesterone effects on early embryo development in cattle. Journal of Dairy Science, 103(9), 8698-8707. https://doi.org/10.3168/jds.2020-18583

Machado, R., & Kesler, D. J. (1996). Efficacy of norethindrone acetate and norgestomet implants in suppressing estrus in female beef cattle. Drug Development and Industrial Pharmacy, 22(12), 1211-1216. https://doi.org/10.3109/03639049609063239

Machatková, M., Krausova, K., Jokesova, E., & Tomanek, M. (2004). Developmental competence of bovine oocytes: effects of follicle size and the phase of follicular wave on in vitro embryo production. Theriogenology, 61(2-3), 329-335. https://doi.org/10.1016/S0093-691X(03)00216-4

Maluf, D. Z., Pires, A. V., Susin, I., Moreira, R. J. C., Madureira, E. H., Binelli, M., Gonçalves, J. R., Lima, L. G., Mendes, C. Q., & Biehl, M. V. (2010). Avaliação da reutilização de implantes contendo progestágenos na taxa de prenhez em vacas de corte. Brazilian Journal of Veterinary Research and Animal Science, 47(1), 38-46. https://www.revistas.usp.br/bjvras/article/view/26847/28630

McGuire, W. J., Larson, R. L., & Kiracofe, G. H. (1990). Syncro-mate B® induces estrus in ovariectomized cows and heifers. Theriogenology, 34(1), 33-37. https://doi.org/10.1016/0093-691X(90)90574-D

Moore, S., & Hasler, J. (2017). A 100-year review: reproductive technologies in dairy science. Journal of Dairy Science, 100(12), 10314-10331. https://doi.org/10.3168/jds.2017-13138

Oliveira, C. S., Serapião, R. V., Camargo, A. J. R., Freitas, C., Iguma, L. T., Campos Carvalho, B. C., Almeida Camargo, L. S., Zoccolaro Oliveira, L., & Verneque, R. S. (2019). Oocyte origin affects the in vitro embryo production and development of Holstein (Bos taurus taurus) - Gyr (Bos taurus indicus) reciprocal cross embryos. Animal Reproduction Science, 209, Article number 106165. https://doi.org/10.1016/j.anireprosci.2019.106165

Parrish, J., Krogenaes, A., & Susko-Parrish, J. L. (1995). Effect of bovine sperm separation by either swim-up or Percoll method on success of in vitro fertilization and early embryonic development. Theriogenology, 44(6), 859-869. https://doi.org/10.1016/0093-691X(95)00271-9

Pavlok, A., Lucas-Hahn, A., & Niemann, H. (1992). Fertilization and developmental competence of bovine oocytes derived from different categories of antral follicles. Molecular Reproduction and Development, 31(1), 63-67. https://doi.org/10.1002/mrd.1080310111

Perry, G. A., Welshons, W. V., Bott, R. C., & Smith, M. F. (2005). Basis of melengestrol acetate action as a progestin. Domestic Animal Endocrinology, 28(2), 147-161. https://doi.org/10.1016/j.domaniend.2004.07.002

Pfeifer, L. F. M., Sartori, R., Pivato, I., Rumpf, R., Nogueira, G. P., Xavier, E. G., Dionello, N. J. L., & Corrêa, M. N. (2009). Effect of circulating progesterone on in vitro developmental competence of bovine oocytes. Animal Reproduction, 6(3), 473-480. https://www.animal-reproduction.org/article/5b5a6071f7783717068b477a/pdf/animreprod-6-3-473.pdf

Pirestani, A., Hosseini, S. M., Hajian, M., Forouzanfar, M., Moulavi, F., Abedi, P., Gourabi, H., Shahverdi, A., Taqi Dizaj, A. V., & Esfahani, M. H. N. (2011). Effect of ovarian cyclic status on in vitro embryo production in cattle. International Journal of Fertility and Sterility, 4(4), 172-175. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4023504/pdf/Int-J-Fertil-Steril-4-172.pdf

Saad, M., Sarwar, Z., Saleem, M., Arshad, U., Shahzad, M., Mushtaq, M. H., Husnain, A., Riaz, A., & Ahmad, N. (2019). Effect of plasma progesterone on oocyte recovery, oocyte quality, and early in-vitro developmental competence of embryos in Bos indicus dairy cows. Animal Reproduction Science, 202, 80-86. https://doi.org/10.1016/j.anireprosci.2019.02.001

Salhab, M., Tosca, L., Cabau, C., Papillier, P., Perreau, C., Dupont, J., Mermillod, P., Uzbekova, S. (2011). Kinetics of gene expression and signaling in bovine cumulus cells throughout IVM in different mediums in relation to oocyte developmental competence, cumulus apoptosis and profesterone secretion. Theriogenology, 75(1), 90-104. https://doi.org/10.1016/j.theriogenology.2010.07.014

Santiago, L. L., Alves Torres, C., Uribe-Velázquez. L. F., Cecon, P. R., & Terra Nogueira, E. (2001). Perfil hormonal de progesterona durante o ciclo estral em novilhas Nelore confinadas com diferentes ondas de crescimento folicular. Revista Brasileira de Zootecnia, 30(6s), 2017-2020. https://www.scielo.br/pdf/rbz/v30n6s0/7413.pdf

Sato, E., Matsuo, M., & Miyamoto, H. (1990). Meiotic maturation of bovine oocytes in vitro: Improvement of meiotic competence by dibutyryl cyclic adenosine 3′,5′-monophosphate. Journal of Animal Sciencie, 68(4), 1182-1187. https://doi.org/10.2527/1990.6841182x

Snijders, S. E. M., Dillon, P., O’Callaghan, D., & Boland, M. P. (2000). Effect of genetic merit, milk yield, body condition and lactation number on in vitro oocyte development in dairy cows. Theriogenology, 53(4), 981-989. https://doi.org/10.1016/S0093-691X(00)00244-2

Stringfellow, D. A., & Givens, M. D. (2010). Manual da Sociedade Internacional de Transferência de Embriões. Illinios: International Embryo Transfer Society Inc.

Takuma, T., Otsubo, T., Kurokawa, Y., & Otoi, T. (2007). 416 effects of the corpus luteum within the ovary on the follicular dynamics after follicular aspiration and on the developmental competence of aspired oocytes. Reproduction, Fertility and Development, 19(1), 324. https://doi.org/10.1071/RDv19n1Ab416

Torres-Júnior, J. R. de S., Pires, M. de F. A., De Sá, W. F., Ferreira, A. de M., Viana, J. H. M., Camargo, L. S. A., Ramos, A. A., Folhadella, I. M., Polisseni, J., De Freitas, C., Clemente, C. A. A., De Sá Filho, M. F., Paula-Lopes, F. F., & Baruselli, P. S. (2008). Effect of maternal heat-stress on follicular growth and oocyte competence in Bos indicus cattle. Theriogenology, 69(2), 155-166. https://doi.org/10.1016/j.theriogenology.2007.06.023

Uribe-Velásquez, L., Correa-Orozco, A., Cuartas-Betancurth, L., Villamizar-Ramírez, D., & Ángel-Botero, S. (2013). Evaluación de implantes de norgestomet reutilizados en protocolos de sincronización del estro en vacas Brahman. Revista MVZ Córdoba, 18(1), 3336-3345. https://revistamvz.unicordoba.edu.co/article/view/196/265

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

201 | 100




 

Creative Commons License Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2022 Ciencia & Tecnología Agropecuaria