Resumen
La variabilidad espacial del suelo es un factor importante para entender los cambios de las variables de respuesta en experimentos agrícolas. El muestreo de suelos se ejecuta con base en un patrón espacial, el cual puede ser aleatorio o sistemático. El objetivo de este trabajo fue validar un nuevo algoritmo para generar patrones espaciales de muestreo de suelos en este contexto. Para esto se diseñaron tres funciones en el software R, las cuales fueron comparadas con cinco aplicaciones (tres programas y dos librerías de R). La validación se realizó replicando tres patrones espaciales de suelos en experimentos agrícolas reportados en investigaciones anteriores, además de comparar la localización manual de puntos de muestreo en un experimento de cosecha de caña de azúcar con la localización generada por el algoritmo. Los resultados indican que el algoritmo tiene la capacidad exclusiva de realizar muestreos sistemáticos por unidad de área y centrarlos en el polígono correspondiente. El resto de las características, tales como el cálculo de los demás patrones y la generación de puntos sobre líneas, es posible encontrarlas en las otras aplicaciones. Con respecto a la validación en campo, la distancia promedio entre puntos generados con el algoritmo y los ubicados manualmente en campo es 2,58 m. La distancia promedio entre los puntos ubicados manualmente en campo y la línea de surco más cercana es 0,46 m. En conclusión, el algoritmo permite ubicar puntos de muestreo en sitios específicos del campo, como lo son las partes altas del surco o el entresurco.
Adamchuk, V. I., Hummel, J. W., Morgan, M. T., & Upadhyaya, S. K. (2004). On-the-go soil sensors for precision agriculture. Computers and Electronics in Agriculture, 44(1), 71-91. https://doi.org/10.1016/j.compag.2004.03.002
Adamchuk, V. I., Lund, E. D., Sethuramasamyraja, B., Morgan, M. T., Dobermann, A., & Marx, D. B. (2005). Direct measurement of soil chemical properties on-the-go using ion-selective electrodes. Computers and Electronics in Agriculture, 48(3), 272-294. https://doi.org/10.1016/j.compag.2005.05.001
Awange, J. L. (2012). Environmental monitoring using GNSS. Springer. https://doi.org/10.1007/978-3-540-88256-5
Badalíková, B. (2010). Influence of soil tillage on soil compaction. En A. P. Dedousis, & T. Bartzanas (Eds.), Soil Engineering (pp. 19-30). Springer.
Barik, K., Aksakal, E. L., Islam, K. R., Sari, S., & Angin, I. (2014). Spatial variability in soil compaction properties associated with field traffic operations. Catena, 120, 122-133. https://doi.org/10.1016/j.catena.2014.04.013
Bivand, R. S., Pebesma, E. J., & Gómez-Rubio, V. (2008). Spatial data import and export. En Applied Spatial Data Analysis with R (pp. 81-111). Springer. https://doi.org/10.1007/978-0-387-78171-6
Bishop, T. F. A., & Lark, R. M. (2006). The geostatistical analysis of experiments at the landscape-scale. Geoderma, 133(1-2), 87-106. https://doi.org/10.1016/j.geoderma.2006.03.039
Borgelt, S. C., Harrison, J. D., Sudduth, K. A., & Birrell, S. J. (1996). Evaluation of GPS for applications in precision agriculture. Applied Engineering in Agriculture, 12(6), 633-638. https://doi.org/10.13031/2013.25692
Braunack, M. V. (2004). A tyre option for sugarcane haulout trucks to minimise soil compaction. Journal of Terramechanics, 41(4), 243-253. https://doi.org/10.1016/j.jterra.2004.03.001
Britton, J. (2014). An evaluation of soil sampling methods in support of precision agriculture in Northeastern North Carolina (Tesis de maestría, University of Sourthen California). Digital Library. https://digitallibrary.usc.edu/Share/6030sh0y60en8tl7vh0n8nml5sbcihe0
Brus, D. J. (2015). Balanced sampling: A versatile sampling approach for statistical soil surveys. Geoderma, 253-254, 111-121. https://doi.org/10.1016/j.geoderma.2015.04.009
Castilla, G., Hernando, A., Zhang, C., Mauro, F., & McDermid, G. (2014). POLS: A versatile tool for sampling polygon GIS layers. Computers and Geosciences, 67, 139-149. https://doi.org/10.1016/j.cageo.2013.10.003
Cochran, W. G. (1977). Sampling techniques (3.a ed.). John Wiley & Sons.
Cordeiro, G., Amouyal, O., Eliott, F., & Henry, R. (2007). Sugarcane. En C. Kole (Ed.), Genome mapping and molecular breeding in plants: Pulses, sugar and tuber crops (pp. 175-203). Springer.
Covely, T. W. (2012). Patent N.o US 8,286,857 B2. https://portal.unifiedpatents.com/patents/patent/US-8286857-B2
Dalmis, I. S., Akdemir, B., Turen, N., & Belliturk, K. (2016). Development of an automatic soil sampling machine. Journal of Tekirdag Agricultural Faculty, 13(3), 1-12. http://bhi.nku.edu.tr/basinyonetim/resim/images/editorresimleri/522/files/01_savas_dalmis.pdf
de Gruijter, J., Bierkens, M., Brus, D., & Knotters, M. (2006). Sampling for natural resource monitoring. Springer. https://doi.org/https://doi.org/10.1007/3-540-33161-1
Dean, A., Voss, D., & Draguljić, D. (2017). Planning experiments. In Design and analysis of experiments (2.a ed., pp. 7-30). Springer. https://doi.org/10.1007/978-3-319-52250-0_1
Delmelle, E. M. (2014). Spatial sampling. En M. M. Fischer, & P. Nijkamp (Eds.), Handbook of Regional Science (pp. 1385-1399). Springer. https://doi.org/10.1007/978-3-642-23430-9_73
Domburg, P., de Gruijter, J. J., & Van Beek, P. (1997). Designing efficient soil survey schemes with a knowledge-based system using dynamic programming. Geoderma, 75(3-4), 183-201. https://doi.org/10.1016/S0016-7061(96)00090-0
Driemeier, C., Ling, L. Y., Sanches, G. M., Pontes, A. O., Magalhães, P. S. G., & Ferreira, J. E. (2016). A computational environment to support research in sugarcane agriculture. Computers and Electronics in Agriculture, 130, 13-19. https://doi.org/10.1016/j.compag.2016.10.002
Environmental Protection Agency [EPA]. (2002). Guidance on choosing a sampling design for environmental data collection for use in developing a quality assurance project plan [U.S. Environmental Protection Agency Quality System Series]. EPA. https://www.epa.gov/quality/guidance-choosing-sampling-design-environmental-data-collection-use-developing-quality
Ferguson, R. B., & Hergert, G. W. (2009). Soil sampling for precision agriculture. Precision Agriculture [Universidad de Nebraska]. https://cropwatch.unl.edu/documents/Soil%20Sampling%20for%20Precision%20Agriculture%2C%20EC154.pdf
Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research (2.a ed.). John Wiley & Sons. https://pdf.usaid.gov/pdf_docs/PNAAR208.pdf
Heil, K., & Schmidhalter, U. (2017). Improved evaluation of field experiments by accounting for inherent soil variability. European Journal of Agronomy, 89, 1-15. https://doi.org/10.1016/j.eja.2017.05.004
Kerry, R., Oliver, M. A., & Frogbrook, Z. L. (2010). Sampling in precision agriculture. En M. A. Oliver (Ed.), Geostatistical Applications for Precision Agriculture (pp. 35-62). Springer. https://doi.org/10.1007/978-90-481-9133-8
Kidd, D., Malone, B., McBratney, A., Minasny, B., & Webb, M. (2015). Operational sampling challenges to digital soil mapping in Tasmania, Australia. Geoderma Regional, 4, 1-10. https://doi.org/10.1016/j.geodrs.2014.11.002
Lobsey, C., Viscarra, R., & McBratney, A. (2010). An automated system for rapid in-field soil nutrient testing. En R. J. Gilkes & N. Prakongkep (Eds.), 19th World Congress of Soil Science, Soil Solutions for a Changing World (pp. 9-12). https://www.iuss.org/19th%20WCSS/Symposium/pdf/1.5.1.pdf
Montgomery, D. (2001). Design and Analysis of Experiments (5.a ed.). John Wiley & Sons.
Oliver, M. A., & Webster, R. (2014). A tutorial guide to geostatistics: Computing and modelling variograms and kriging. Catena, 113, 56-69. https://doi.org/10.1016/j.catena.2013.09.006
Oliver, M. A., & Webster, R. (2015). Basic steps in geostatistics: The variogram and kriging. Springer. https://doi.org/10.1007/978-3-319-15865-5
Qing-Huo, L., Hong, L., Bao-Guo, L., Peng-Tao, G., Wei, L., & Zhao-Mu, L. (2016). Assessment of spatial uncertainty for delineating optimal soil sampling sites in rubber tree management using sequential indicator simulation. Industrial Crops and Products, 91, 231-237. https://doi.org/10.1016/j.indcrop.2016.07.030
Soares, G., Menezes, Z., Barboza, R., Sobreira, R., & Silva, F. (2014). Effects of traffic control on the soil physical quality and the cultivation of sugarcane. Revista Brasileira de Ciência do Solo, 38(1), 135-146. https://doi.org/10.1590/s0100-06832014000100013
R Core Team. (2019). R: A language and environment for statistical computing. https://www.r-project.org/
Ripley, B. D. (1979). Simulating spatial patterns: Dependent samples from a multivariate density. Journal of the Royal Statistical Society, 28(1), 109-112.
Rocco, C., Duro, I., Di Rosa, S., Fagnano, M., Fiorentino, N., Vetromile, A., & Adamo, P. (2016). Composite vs. discrete soil sampling in assessing soil pollution of agricultural sites affected by solid waste disposal. Journal of Geochemical Exploration, 170, 30-38. https://doi.org/10.1016/j.gexplo.2016.08.004
Rovira Más, F., Zhang, Q., & Hansen, A. (2010). Global Navigation Systems. En Mechatronics and intelligent systems for off-road vehicles (pp. 43-73). Springer.
Wang, J.-F., Jiang, C.-S., Hu, M.-G., Cao, Z.-D., Guo, Y.-S., Li, L.-F., Liu, T.-J & Meng, B. (2013). Design-based spatial sampling: Theory and implementation. Environmental Modelling & Software, 40, 280-288. https://doi.org/10.1016/j.envsoft.2012.09.015
Wang, J.-F., Stein, A., Gao, B.-B., & Ge, Y. (2012). A review of spatial sampling. Spatial Statistics, 2(1), 1-14. https://doi.org/10.1016/j.spasta.2012.08.001