Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio

Revisión del impacto de concentraciones elevadas de CO2 sobre frutales en la era del cambio climático

Universidad Nacional de Colombia
Universidad Nacional de Colombia
Universidad Nacional de Colombia
dióxido de carbono enriquecimiento de dióxido de carbono fotosíntesis fuerza vertedero nitrógeno uso eficiente del agua fisiología de frutales relaciones fuente sumidero

Resumen

Las actividades antropogénicas han contribuido a que la concentración de CO2 atmosférico aumente constantemente con una predicción de 600 a 700 ppm para fines de este siglo, siendo una de las mayores causas del calentamiento global. Los huertos frutales y viñedos son importantes sistemas de producción sostenible que pueden minimizar las emisiones y secuestrar carbono de la atmósfera. Para esta revisión de literatura, se evaluó mediante la información obtenida de diferentes bases de datos. Generalmente, el CO2 elevado (e-CO2) genera efectos positivos sobre los frutales en procesos como el aumento de la fotosíntesis, el uso eficiente de agua, el crecimiento y la biomasa. Por lo anterior, en muchos casos, el rendimiento y la calidad de los frutos también incrementaron. Se estima que, con un e-CO2 de 600-750 ppm, la mayoría de las plantas C3 crecerán un 30 % más rápido. Con 1000 ppm las condiciones serán óptimas para la fotosíntesis de varias especies vegetales. Los árboles frutales que también crecen en Colombia como los cítricos, la vid, la fresa, la papaya y la pitaya, se beneficiarían de los efectos positivos mencionados anteriormente, en tanto que el e-CO2 aliviaría los efectos del estrés por sequía y anegamiento. Sin embargo, el mayor crecimiento de los frutales por el e-CO2 exige un mayor suministro de nutrientes y agua, por lo cual es muy importante la selección de genotipos que se benefician del e-CO2 y que presenten un alto uso eficiente de nitrógeno y agua. Así mismo, es deseable que dichas especies posean una alta fuerza vertedero para evitar la acumulación de carbohidratos en el cloroplasto. Esta revisión permite concluir que existe un “efecto fertilizante del CO2” sobre las especies frutales que aumenta con el avance del cambio climático. Sin embargo, existe poca investigación en comparación con muchos otros cultivos agrícolas. Por ello, a futuro se requieren estudios que midan los efectos directos del e-CO2 atmosférico y sus interacciones con variables ambientales, como la lluvia, la temperatura, la humedad del suelo y la disponibilidad de nutrientes.

Fischer, G., Melgarejo, L. M., & Balaguera-López, H. E. . (2022). Revisión del impacto de concentraciones elevadas de CO2 sobre frutales en la era del cambio climático. Ciencia Y Tecnología Agropecuaria, 23(2). https://doi.org/10.21930/rcta.vol23_num2_art:2475

Ainsworth, E. A., & Lemonnier, P. (2018). Phloem function: a key to understanding and manipulating plant responses to rising atmospheric [CO2]? Current Opinion in Plant Biology, 43, 50-56. https://doi.org/10.1016/j.pbi.2017.12.003

Ainsworth, E. A., & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell and Environment, 30, 258-270. https://doi.org/10.1111/j.1365-3040.2007.01641.x

Al‐Mamoori, A., Krishnamurthy, A., Rownaghi, A. A., & Rezaei, F. (2017). Carbon capture and utilization update. Energy Technology, 5(6), 834-849. https://doi.org/10.1002/ente.201600747

Allen, L. H., & Vu, J. C. V. (2009). Carbon dioxide and high temperature effects on growth of young orange trees in a humid, subtropical environment. Agriculture and Forest Meteorology, 149, 820-830. https://doi.org/10.1016/j.agrformet.2008.11.002

Altieri, M. A., & Nicholls, C. I. (2017). The adaptation and mitigation potential of traditional agriculture in a changing climate. Climate Change, 140(1), 33-45. https://doi.org/10.1007/s10584-013-0909-y

Anderson, C. M., DeFries, R. S., Litterman, R., Matson, P. A., Nepstad, D. C., Pacala, S., Schlesinger, W. H., Shaw, M. R., Smith, P., Weber, C., & Field, C. B. (2019). Field natural climate solutions are not enough. Science, 363(6430), 933-934. http://dx.doi.org/10.1126/science.aaw2741

Balasooriya, H. N., Dassanayake, K. B., & Ajlouni, S. (2019). The impact of elevated CO2 and high temperature on the nutritional quality of fruits - A short review. American Journal of Agricultural Research, 4(26), 1-9. https://escipub.com/ajar-2018-12-1608/

Bhargava, S., & Mitra, S. (2021). Elevated atmospheric CO2 and the future of crop plants. Plant Breeding 140, 1-11. https://doi.org/10.1111/pbr.12871

Becker, C., & Kläring H. P. (2016). CO2 enrichment can produce high red leaf lettuce yield while increasing most flavonoid glycoside and some caffeic acid derivative concentrations. Food Chemistry, 199, 736-745. https://doi.org/10.1016/j.foodchem.2015.12.059

Bindi, M., Fibbi, L., & Miglietta, F. (2001). Free air CO2 Enrichment (FACE) of grapevine (Vitis vinifera L.): II. Growth and quality of grape and wine in response to elevated CO2 concentrations. European Journal of Agronomy, 14(2), 145-155. https://doi.org/10.1016/S1161-0301(00)00093-9

Bisbis, M. B., Gruda, N., & Blanke, M. (2018). Potential impacts of climate change on vegetable production and product quality - a review. Journal of Cleaner Production, 170, 1602-1620. https://doi.org/10.1016/j.jclepro.2017.09.224

Bradley, K. L., & Pregitzer, K. S. (2007). Ecosystem assembly and terrestrial carbon balance under elevated CO2. Trends in Ecology and Evolution, 22(10), 538-547. https://doi.org/10.1016/j.tree.2007.08.005

Brito, F., Thaline, T., Pimenta, M., Henschel, J., Martins, S., Zsögön, A., & Ribeiro, D. (2020). Elevated CO2 improves assimilation rate and growth of tomato plants under progressively higher soil salinity by decreasing abscisic acid and ethylene levels. Environmental and Experimental Botany, 176, 104050. https://doi.org/10.1016/j.envexpbot.2020.104050

Brunori, E., Farina, R., & Biasi R. (2016). Sustainable viticulture: The carbon-sink function of the vineyard agro-ecosystem. Agriculture, Ecosystems and Environment, 223, 10-21. https://doi.org/10.1016/j.agee.2016.02.012

Casierra-Posada, F. & Fischer, G. (2012). Poda de árboles frutales. In G. Fischer (Ed.), Manual para el cultivo de frutales en el trópico (pp. 169-185). Produmedios.

Ceulemans, R., Janssens, I. A., & Jach, M. E. (1999). Effects of CO2 enrichment on trees and forests: Lessons to be learned in view of future ecosystem studies. Annals of Botany, 84(5), 577-590. https://doi.org/10.1006/anbo.1999.0945

Cortés, A. J., Restrepo-Montoya, M., & Bedoya-Canas, L. E. (2020). Modern strategies to assess and breed forest tree adaptation to changing climate. Frontiers in Plant Science, 11, 583323. https://doi.org/10.3389/fpls.2020.583323

Cruz, J. L., Alves, A. A. C., LeCain, D. R., Ellis, D. D., & Morgan, J. A. (2016). Interactive effects between nitrogen fertilization and elevated CO2 on growth and gas exchange of papaya seedlings. Scientia Horticulturae, 202, 32-40. https://doi.org/10.1016/j.scienta.2016.02.010

DaMatta, F. M., Grandis, A., Arenque, B. C., & Buckeridge, M. S. (2010). Impacts of climate changes on crop physiology and food quality. Food Research International, 43, 1814-1823. https://doi.org/10.1016/j.foodres.2009.11.001

De Zwart, H. F. (2012). Lessons learned from experiments with semi-closed greenhouses. Acta Horticulturae, 952, 583-588. https://doi.org/10.17660/ActaHortic.2012.952.74

Dingkuhn, M., Luquet, D., Fabre, D., Muller, B., Yin, X., & Paul, M. J. (2020). The case for improving crop carbon sink strength or plasticity for a CO2-rich future. Current Opinion in Plant Biology, 56, 259-272. https://doi.org/10.1016/j.pbi.2020.05.012

Dong, J., Gruda, N., Li, X., & Duan, Z. (2018). Effects of elevated CO2 on nutritional quality of vegetables: A review. Frontiers of Plant Science, 9, 924. https://doi.org/10.3389/fpls.2018.00924

Dong, J., Gruda, N., Li, X., Tang, Y., & Duan, Z. (2020). Impacts of elevated CO2 on nitrogen uptake of cucumber plants and nitrogen cycling in a greenhouse soil. Applied Soil Ecology, 145, 103342. https://doi.org/10.1016/j.apsoil.2019.08.004

Drake, B. G., & González-Meler, M. A. (1997). More efficient plants: a consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology, 48, 609-639. https://doi.org/10.1146/annurev.arplant.48.1.609

Ebi, K. L., Anderson, C. L., Hess, J. J., Kim, S.-H., Loladze, I., Neumann, R. B., Singh, D., Ziska, L., & Wood, R. (2021). Nutritional quality of crops in a high CO2 world: an agenda for research and technology development. Environmental Research Letters, 16, 064045. https://doi.org/10.1088/1748-9326/abfcfa

Fischer, G., & Melgarejo, L. M. (2020). The ecophysiology of cape gooseberry (Physalis peruviana L.) - an Andean fruit crop. A review. Revista Colombiana de Ciencias Horticolas, 14(1), 76-89. https://doi.org/10.17584/rcch.2020v14i1.10893

Fischer, G., & Orduz-Rodríguez, J. (2012). Ecofisiología en frutales. In G. Fischer (Ed.), Manual para el cultivo de frutales en el trópico (pp. 54-72). Produmedios.

Fischer, G., Ramírez, F., & Casierra-Posada, F. (2016). Ecophysiological aspects of fruit crops in the era of climate change. A review. Agronomía Colombiana, 34(2), 190-199. https://doi.org/10.15446/agron.colomb.v34n2.56799

Gruda, N., Bisbis, M., & Tanny, J. (2019). Influence of climate change on protected cultivation: Impacts and sustainable adaptation strategies - A review. Journal of Cleaner Production, 225, 481e495. https://doi.org/10.1016/j.jclepro.2019.03.210

Haokip, S. W., Shankar, K., & Lalrinngheta, J. (2020). Climate change and its impact on fruit crops. Journal of Pharmacognosy and Phytochemistry, 9(1), 435-438. https://www.phytojournal.com/archives?year=2020&vol=9&issue=1&ArticleId=10464

Henson, R. (2011). The rough guide to climate change (3rd ed.). Penguin Books.

Hiratsuka, S., Suzuki, M., Nishimura H., & Nada, K. (2015). Fruit photosynthesis in Satsuma mandarin. Plant Science, 241, 65-69. https://doi.org/10.1016/j.plantsci.2015.09.026

Houston, L., Capalbo, S., Seavert, C., Dalton, M., Bryla, D., & Sagili, R. (2018). Specialty fruit production in the Pacific Northwest: adaptation strategies for a changing climate. Climate Change, 146, 159-171. https://doi.org/10.1007/s10584-017-1951-y

IPCC. (2013). Climate change 2013: The physical science basis. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

IPCC. (2019). Summary for Policymakers. In Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Intergovernmental Panel on Climate Change.

Jackson, L. E., Wheeler, S. M., Hollander, A. D., O’Geen, A. T., Orlove, B. S., Six, J., Sumner, D. A., Santos-Martin, F., Kramer, J. B., Horwath, W. R., Howit, R. E. T, & Tomich, T. P. (2011). Case study on potential agricultural responses to climate change in a California landscape. Climate Change, 109(Suppl 1), S407-S427. https://doi.org/10.1007/s10584-011-0306-3

Jones, G. V., White, M. A., Cooper, O. R., & Storchmann, K. (2005). Climate change and global wine quality. Climate Change, 73, 319-343. https://doi.org/10.1007/s10584-005-4704-2

Keutgen, N., Chen, A. I., & Lenz, F. (1997). Responses of strawberry leaf photosynthesis, chlorophyll fluorescence and macronutrient contents to elevated CO2. Journal of Plant Physiology, 150, 395-400. https://doi.org/10.1016/S0176-1617(97)80088-0

Kimball, B. A., Idso, S. B., Johnson, S., & Rillig, M. C. (2007). Seventeen years of carbon dioxide enrichment of sour orange trees: final results. Global Change Biology, 13, 2171-2183. https://doi.org/10.1111/j.1365-2486.2007.01430.x

Kizildeniz, T., Pascual, I., Irigoyen, J. J., & Morales, F. (2018). Using fruit-bearing cuttings of grapevine and temperature gradient greenhouses to evaluate effects of climate change (elevated CO2 and temperature, and water deficit) on the cv. red and white Tempranillo. Yield and must quality in three consecutive growing seasons (2013-2015). Agricultural Water Management, 202, 299-310. https://doi.org/ 10.1016/j.agwat.2017.12.001

Kläring, H. P., Hauschild, C., Heißner, A., & Bar-Yosef, B. (2007). Model-based control of CO2 concentration in greenhouses at ambient levels increases cucumber yield. Agricultural and Forest Meteorology, 143, 208-216. https://doi.org/10.1016/j.agrformet.2006.12.002

Kochhar, S. L., & Gujral, S. K. (2020). Plant physiology: Theory and applications (2nd ed.). Cambridge University Press. https://doi.org/10.1017/9781108486392

Kumar, M., Sundaram, S., Gnansounou, E., Larroche, C., & Thakur, I. S. (2017). Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: a review. Bioresource Technology, 247, 1059-1068. https://doi.org/ 10.1016/j.biortech.2017.09.050

Larcher, W. (2003). Physiological plant ecology. Springer-Verlag. https://doi.org/ 10.1007/978-3-662-05214-3

Leakey, A. D. B. (2009). Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel. Proceedings of the Royal Society B, 276, 2333-2343. https://doi.org/10.1098/rspb.2008.1517

Leakey, A. D. B., Bishop, K. A., &. Ainsworth, E. A. (2012). A multi-biome gap in understanding of crop and ecosystem responses to elevated CO2. Current Opinion in Plant Biology, 15, 228-236. https://doi.org/10.1016/j.pbi.2012.01.009

Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Hauck, J., Pongratz, J., Pickers, P. A., Korsbakken, J. I., Peters, G. P., Canadell, J. G., Arneth, A., Arora, V. K., Barbero, L., Bastos, A., Bopp, L., Chevallier, F., Chini, L. P., Ciais, P., Doney, S. C., …, & Zheng, B. (2018). Global Carbon Budget 2018. Earth System Science Data, 10, 2141-2194. https://doi.org/10.5194/essd-10-2141-2018

Leung, D. Y., Caramanna G., & Maroto-Valer, M. M. (2014). An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Review, 39, 426-443. https://doi.org/10.1016/j.rser.2014.07.093

Li, X., Zhao, J., Shang, M., Song, H., Zhang, J., Xu, X., Zheng, S., Hou, L., Li, M., & Xing, G. (2020). Physiological and molecular basis of promoting leaf growth in strawberry (Fragaria × ananassa Duch.) by CO2 enrichment. Biotechnology & Biotechnological Equipment, 34(1), 905-917. https://doi.org/10.1080/13102818.2020.1811766

López-Bellido, L. (2015). Agricultura, cambio climático y secuestro de carbono. Universidad de Córdoba.

Luedeling, E., Girvetz, E. H., Semenov, M. A., & Brown, P. H. (2011). Climate change affects winter chill for temperate fruit and nut trees. PLoS ONE, 6(5), e20155. https://doi.org/10.1371/journal.pone.0020155

Marín, M. del P., Andrade, H. J., & Sandoval, A. P. (2016). Fijación de carbono atmosférico en la biomasa total de sistemas de producción de cacao en el departamento del Tolima, Colombia. Revista U.D.C.A Actualidad & Divulgación Científica, 19(2), 351-360. https://doi.org/10.31910/rudca.v19.n2.2016.89

Martínez-Lüscher, J., Morales, F., Sánchez-Díaz, M., Delrot, S., Aguirreolea, J., Gomès, E., & Pascual, I. (2015). Climate change conditions (elevated CO2 and temperature) and UV-B radiation affect grapevine (Vitis vinifera cv. Tempranillo) leaf carbon assimilation, altering fruit ripening rates. Plant Science, 236, 168-176. https://doi.org/10.1016/j.plantsci.2015.04.001

Menezes-Silva, P. E., Loram-Lourenço, L., Alves, R. D. F. B., Sousa, L. F., Almeida, S. E. D. S., & Farnese, F. S. (2019). Different ways to die in a changing world: Consequences of climate change for tree species performance and survival through an ecophysiological perspective. Ecology and Evolution, 2019, 1-21. https://doi.org/10.1002/ece3.5663

Mishra, A. K., Agrawal, S. B., & Agrawal, M. (2019). Rising atmospheric carbon dioxide and plant responses: current and future consequences. In Climate change and agricultural ecosystems (pp. 265-306). Elsevier. https://doi.org/10.1016/B978-0-12-816483-9.00011-6

Moretti, C. L., Mattos L. M., Calbo A. G., & Sargent S. A. (2010). Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: A review. Food Research International, 43, 1824-1832. https://doi.org/10.1016/j.foodres.2009.10.013

Morgan, J. A., LeCain, D. R., Pendall, E., Blumenthal, D. M., Kimball, B. A., Carrillo, Y., Williams, D. G., Heisler-White, J., Dijkstra, F. A., & West, M. (2011). C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature, 476, 202-206. https://doi.org/10.1038/nature10274

Moriondo, M., Jones, G. V., Bois, B., Dibari, C., Ferrise, R., Trombi, G., & Bindi, M. (2013). Projected shifts of wine regions in response to climate change. Climate Change, 19(3-4), 825-839. https://doi.org/10.1007/s10584-013-0739-y

Nobel, P. S. (1991). Achievable productivities of certain CAM plants: basis for high values compared with C3 and C4 plants. New Phytology, 119(2), 183-205. https://doi.org/10.1111/j.1469-8137.1991.tb01022.x

Nobel, P. S. (1999). Physicochemical & environmental plant physiology (2nd ed.). Academic Press.

Ouda, O. K. M., Raza. S. A., Nizami. A. S., Rehan. M., Al-Waked. R., & Korres. N. E. (2016). Waste to energy potential: a case study of Saudi Arabia. Renewable and Sustainable Energy Reviews, 61, 328-340. https://doi.org/10.1016/j.rser.2016.04.005

Patil, P., & Kumar, K. (2017). Biological carbon sequestration through fruit crops (perennial crops - natural “sponges” for absorbing carbon dioxide from atmosphere). Plant Archives, 17(2), 1041-1046. http://plantarchives.org/17-2/1041-1046%20(3939).pdf

Paudel, I., Halpern, M., Wagner, Y., Raveh, E., Yermiyahu, U., Hoch, G., & Klein, T. (2018). Elevated CO2 compensates for drought effects in lemon saplings via stomatal downregulation, increased soil moisture, and increased wood carbon storage. Environmental and Experimental Botany, 148, 117-127. https://doi.org/10.1016/j.envexpbot.2018.01.004

Pérez, C., Nicklin, C., Dangles, O., Vanek, S., Sherwood, S., Halloy, S., Garrett, K., & Forbes, G. (2010). Climate change in the High Andes: Implications and adaptation strategies for small-scale farmers. International Journal of Environmental, Cultural, Economic and Social Sustainability, 6(5), 71-88. https://doi.org/10.18848/1832-2077/CGP/v06i05/54835

Pérez-Jiménez, M., Hernández-Munuera, M., Piñero, M. C., López-Ortega, G., & del Amor F. M. (2017). CO2 effects on the waterlogging response of ‘Gisela 5’ and ‘Gisela 6’ (Prunus cerasus × Prunus canescens) sweet cherry (Prunus avium) rootstocks. Journal of Plant Physiology, 213, 178-187. https://doi.org/10.1016/j.jplph.2017.03.011

Polley, H. W. (2002). Implications of atmospheric and climate change for crop yield. Crop Science, 42, 131-140. https://doi.org/10.2135/cropsci2002.1310

Prior, S. A., Runion, G. B., Torbert, H. A., Idso, S. B., & Kimball, B. A. (2012). Sour orange fine root distribution after seventeen years of atmospheric CO2 enrichment. Agricultural and Forest Meteorology, 162-63, 85-90. https://doi.org/10.1016/j.agrformet.2012.04.014

Pritchard, S. G., & Amthor, J. S. (2005). Crops and environmental change. Food Products Press, The Haworth Press.

Rajan, R., Feza, M., Pandey, K., Aman, A., & Kumar, V. (2020). Climate change and resilience in fruit crops. In Climate change and its effects on Agriculture (pp. 337-354). Biotec Books.

Ramírez, F., & Kallarackal, J. (2015). Responses of fruit trees to global climate change. Springer Briefs in Plant Science. Springer International Publishing. https://doi.org/10.1007/978-3-319-14200-5

Reich, P. B., Hobbie, S. E., Lee, T., Ellsworth, D. S., West, J. B., Tilman, D., Knops, J. M. H., Naeem, S., & Trost, J. (2006). Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature, 440, 922-925. https://doi.org/10.1038/nature04486

Sánchez, S., Morea, R., Serrano-Grijalva, L., Meco, A., & Sánchez-Andrés, R. A. (2015). Free Air CO2 Enrichment (FACE) facility in a wetland to study the effects of elevated atmospheric carbon dioxide: System description and performance. Wetlands, 35, 193-205. http://dx.doi.org/10.1007/s13157-014-0614-2

Sharma, S., Rana, V. S., Prasad, H., Lakra, J., & Sharma, U. (2021). Appraisal of carbon capture, storage, and utilization through fruit crops. Frontiers in Environmental Science, 9, 700768. https://doi.org/10.3389/fenvs.2021.700768

Song, H., Li, Y., Xu, X., Zhang, J., Zheng, S., Hou, L., Xing, G., & Li, M. (2020). Analysis of genes related to chlorophyll metabolism under elevated CO2 in cucumber (Cucumis sativus L.). Scientia Horticulturae, 261, 108988. https://doi.org/10.1016/j.scienta.2019.108988

Stöckle, C. O., Marsal J., & Villar J. M. (2011). Impact of climate change on irrigated tree fruit production. Acta Horticulturae, 889, 41-52. https://doi.org/10.17660/ActaHortic.2011.889.2

Sun, P., Mantri, N., Lou, H., Hu, Y., Sun, D., Zhu, Y., Dong, T., & Lu, H. (2012). Effects of elevated CO2 and temperature on yield and fruit quality of strawberry (Fragaria ananassa Duch.) at two levels of nitrogen application. PLoS ONE, 7(79), e41000. https://doi.org/10.1371/journal.pone.0041000

Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal (6th ed.). Artmed.

Tognetti, R., Raschi, A., Longobucco, A., Lanini, M., & Bindi, M. (2005). Hydraulic properties and water relations of Vitis vinifera L. exposed to elevated CO2 concentrations in a free air CO2 enrichment (FACE). Phyton, 45(3), 243-256. https://www.zobodat.at/pdf/PHY_45_3_0243-0256.pdf

Treutter, D. (2010). Managing phenol contents in crop plants by phytochemical farming and breeding-visions and constraints. International Journal of Molecular Sciences, 11, 807-857. https://doi.org/10.3390/ijms11030807

Vélez, J. E., Polanía, W., & Beltrán, N. (2019). Efecto del régimen de riego en la producción de volátiles que incide en el aroma de la pera variedad Triunfo de Viena (Pyrus communis L.). Revista Colombiana de Ciencias Hortícolas, 13(3), 348-358. https://doi.org/10.17584/rcch.2019v13i3.10920

Vélez-Sánchez, J. E., Balaguera-López, H. E., & Álvarez-Herrera, J. G. (2021). Effect of regulated deficit irrigation (RDI) on the production and quality of pear Triunfo de Viena variety under tropical conditions. Scientia Horticulturae, 278, 109880. https://doi.org/10.1016/j.scienta.2020.109880

Wang, S. Y., Bunce J. A., & Maas, J. L. (2003). Elevated carbon dioxide increases contents of antioxidant compounds in field-grown strawberries. Journal of Agriculture and Food Chemistry, 51, 4315-4320. https://doi.org/10.1021/jf021172d

Wei, Z., Du, T., Li, X., Fang, L., & Liu, F. (2018). Interactive effects of elevated CO2 and N fertilization on yield and quality of tomato grown under reduced irrigation regimes. Frontiers in Plant Science, 9, 328. https://doi.org/10.3389/fpls.2018.00328

Weiss, I., Mizrahi Y., & Raveh, E. (2010). Effect of elevated CO2 on vegetative and reproductive growth characteristics of the CAM plants Hylocereus undatus and Selenicereus megalanthus. Scientia Horticulturae, 123, 531-536. https://doi.org/10.1016/j.scienta.2009.11.002

Wohlfahrt, Y., Smith, J. P., Tittmann, S., Honermeier, B, & Stoll, M. (2018). Primary productivity and physiological responses of Vitis vinifera L. cvs. under Free Air Carbon dioxide Enrichment (FACE). European Journal of Agronomy, 101, 149-162. https://doi.org/10.1016/j.eja.2018.09.005

Wu, T., Wang, Y., Yu1, C., Chiarawipa, R., Zhang, X., Han, Z., & Wu, L. (2012). Carbon sequestration by fruit trees - Chinese apple orchards as an example. PLoS ONE, 7(6), e38883. https://doi.org/10.1371/journal.pone.0038883

Yohannes, H. (2016). A review on relationship between climate change and agriculture. Journal of Earth Science and Climate Change, 7(2), 335. https://doi.org/10.4172/2157-7617.1000335

Zandalinas, S. I., Fritschi, F. B., & Mittler, R. (2021). Global warming, climate change, and environmental pollution: Recipe for a multifactorial stress combination disaster. Trends in Plant Science, 26(6), 588-599. https://doi.org/10.1016/j.tplants.2021.02.011

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

2143 | 1081 | 13




 

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.