Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio
Publicado: 2022-06-20

Rendimiento frutal en ají Tabasco bajo déficit hídrico con agua tratada magnéticamente

Universidad del Valle
Universidad del Valle
Asistente de investigación
##plugins.generic.jatsParser.article.authorBio##
×

Jhony Armando Benavides-Bolaños

PhD candidate in Soil Science & INTAD. MS in Soil Science & INTAD (The Pennsylvania State University, State College PA). Agricultural Engineer (Universidad del Valle-Colombia). FAA licensed Remote Pilot.

Universidad del Valle
eficiencia del uso del agua fotosíntesis magnetismo potencial hídrico foliar producción de biomasa rendimiento de cultivos por riego

Resumen

Se ha utilizado agua tratada magnéticamente (ATM) para promover el rendimiento de biomasa en diferentes cultivos. El ají Tabasco es un cultivo de alta demanda hídrica, pero suele cultivarse en áreas con suministro de agua limitado. Este estudio tuvo como objetivo evaluar el efecto del ATM en la fisiología y el rendimiento de biomasa del ají Tabasco bajo déficit hídrico. El experimento consistió en dos grupos de plantas distribuidas al azar, que recibían agua normal y ATM bajo dos niveles de riego (100 % y 50 % de la capacidad de campo, CC) durante todo el ciclo de vida en casa de malla. Se evaluaron la biomasa de frutos, la fotosíntesis, el potencial hídrico y el estado del tejido foliar. El rendimiento frutal mostró un aumento no significativo en las plantas con ATM en ambos niveles de riego, aunque se detectaron efectos grandes y medianos con respecto al peso seco y el número de frutos por planta (aumento > 16 %). Con respecto a los parámetros de la fotosíntesis, solo el rendimiento cuántico mostró un aumento significativo, a pesar de que la asimilación neta y la conductancia estomática tuvieron un incremento del 17 % y 28 %, respectivamente. Al 50 % de CC, sin importar el tratamiento utilizado, los parámetros fotosintéticos y el potencial hídrico de las hojas se afectaron gravemente, pero sorprendentemente, el contenido relativo de agua y la pérdida de electrolitos en hojas no se vieron afectados de forma significativa. A pesar de que los efectos fisiológicos del ATM observados en este estudio fueron poco significativos, el tamaño del efecto sobre el rendimiento frutal fue notable al final de los experimentos. Por lo tanto, la aplicación de ATM podría ayudar a mejorar la eficiencia del uso del agua en ají Tabasco en combinación con estrategias de riego reducido.

Jhony Armando Benavides-Bolaños, Asistente de investigación

PhD candidate in Soil Science & INTAD. MS in Soil Science & INTAD (The Pennsylvania State University, State College PA). Agricultural Engineer (Universidad del Valle-Colombia). FAA licensed Remote Pilot.

Ospina-Salazar, D. I., L. G. Cortez-Hernández, J. A. Benavides-Bolaños, y O. Zúñiga-Escobar. «Rendimiento Frutal En Ají Tabasco Bajo déficit hídrico Con Agua Tratada magnéticamente». Ciencia Y Tecnología Agropecuaria, vol. 23, n.º 2, junio de 2022, doi:10.21930/rcta.vol23_num2_art:2476.

Alabi, A., Chiesa, M., Garlisi, C., & Palmisano, G. (2015). Advances in anti-scale magnetic water treatment. Environmental Science: Water Research & Technology, 1(4), 408-425. https://doi.org/10.1039/c5ew00052a

Al-Khazan, M., Abdullatif, M., & Al-Assaf, N. (2011). Effects of magnetically treated water on water status, chlorophyll pigments, and some elements content of Jojoba (Simmondsia chinensis L.) at different growth stages. African Journal Environmental Science & Technology, 5(9), 722-731. https://academicjournals.org/article/article1380372603_Al-Khazan%20et%20al.pdf

Al-Ogaidi, A. A. M., Wayayok, A., Rowshon, M. K., & Fikri, A. (2017). The influence of magnetized water on soil water dynamics under drip irrigation systems. Agricultural Water Management, 180, 70-77. https://doi.org/10.1016/j.agwat.2016.11.001

Améglio, T., Archer, P., Cohen, M., Valancogne, C., Daudet, F. A., Dayau, S., & Cruiziat, P. (1999). Significance and limits in the use of predawn leaf water potential for tree irrigation. Plant & Soil, 207(2), 155-167. https://doi.org/10.1023/A:1026415302759

Amira, M. S., Qados, A., Hozayn, M. (2010). Response of growth, yield, yield components, and some chemical constituents of flax for irrigation with magnetized and tap water. World Applied Sciences Journal, 8(5), 630-634. http://idosi.org/wasj/wasj8(5)10/15a.pdf

Ben-Amor, H., Elaoud, A., Salah, B., & Elmoueddeb, K. (2017). Effect of magnetic treatment on surface tension and water evaporation. International Journal of Advance Industrial Engineering, 5(3), 119-124. https://doi.org/10.14741/Ijae/5.3.4

Bunce, J. A. (1999). Leaf and root control of stomatal closure during drying in soybean. Physiologia Plantarum, 106(2), 190-195. https://doi.org/10.1034/j.1399-3054.1999.106207.x

Cai, R., Yang, H., He, J., & Zhu, W. (2009). The effects of magnetic fields on water molecular hydrogen bonds. Journal of Molecular Structure, 938(1-3), 15-19. https://doi.org/10.1016/j.molstruc.2009.08.037

Domec, J. C. (2011). Let’s not forget the critical role of surface tension in xylem water relations. Tree Physiology, 31(4), 359-360. https://doi.org/10.1093/treephys/tpr039

Dorji, K., Behboudian, M. H., & Zegbe-Domínguez, J. A. (2005). Water relations, growth, yield, and fruit quality of hot pepper under deficit irrigation and partial rootzone drying. Scientia Horticulture, 104(2), 137-149. https://doi.org/10.1016/j.scienta.2004.08.015

Fathi, A., Mohamed, T., Claude, G., Maurin, G., & Mohamed, B. A. (2006). Effect of a magnetic water treatment on homogeneous and heterogeneous precipitation of calcium carbonate. Water Research, 40(10), 1941-1950. https://doi.org/10.1016/j.watres.2006.03.013

Ferrari, F. P., Luis, R. A. G. F., Antonio, E. K., Josue, F. Da S. J., Camila, P. C., & Rafael, L. (2015). Response of lettuce crop to magnetically treated irrigation water and different irrigation depths. African Journal of Agricultural Research, 10(22), 2300-2308. https://doi.org/10.5897/ajar2015.9616

Guo, Y., Yin, D., Cao, H., Shi, J., Zhang, C., & Liu, Y. (2012). Evaporation rate of water as a function of a magnetic field and field gradient. International Journal of Molecular Sciences, 13(12), 16916-16928. https://doi.org/10.3390/ijms131216916

Hasaani, A. S., Hadi, Z. L., & Rasheed, K. A. (2015). Experimental study of the interaction of magnetic fields with flowing water. International Journal of Basic & Applied Sciences, 3(3), 1-8.

Huo, Z. F., Zhao, Q., & Zhang, Y. H. (2011). Experimental study on effects of magnetization on surface tension of water. Procedia Engineering, 26, 501-505. https://doi.org/10.1016/j.proeng.2011.11.2198

Khoshravesh, M., Mostafazadeh-Fard, B., Mousavi, S. F., & Kiani, A. R. (2011). Effects of magnetized water on the distribution pattern of soil water with respect to time in trickle irrigation. Soil & Use Management, 27(4), 515-522. https://doi.org/10.1111/j.1475-2743.2011.00358.x

Kunzhen, J., Guanghui, W., & Jianao, Q. (1994). Effect of magnetized water on esterase isozymes in the leaves of tomato plant. Acta Botatica Boreali-Occidentalia Sinica, 14(2), 102-106.

Mahmood, S., & Usman, M. (2014). Consequences of magnetized water application on maize seed emergence in sand culture. Journal of Agricultural Science & Technology, 16(1), 47-55. https://jast.modares.ac.ir/article-23-7594-en.html

Marei, A., Rdaydeh, D., Karajeh, D., & Abu-Khalaf, N. (2014). Effect of using magnetic brackish water on irrigated bell pepper crop (Capsicum annuum L.) characteristics in lower Jordan Valley/West. Journal of Agricultural Sciences & Technology, 4, 830-938. https://scholar.ptuk.edu.ps/handle/123456789/371

Massah, J., Dousti, A., Khazaei, J., & Vaezzadeh, M. (2019). Effects of water magnetic treatment on seed germination and seedling growth of wheat. Journal of Plant Nutrition, 42(11-12), 1283-1289. https://doi.org/10.1080/01904167.2019.1617309

Ogunlela, A. O., & Yusuf, K. O. (2016). Effects of water stress on growth and yield of tomato irrigated with magnetically treated water. Nigerian Journal of Pure Applied Sciences, 29(2), 2824-2835. http://njpas.com.ng/wp-content/uploads/2017/04/14.pdf

Ospina-Salazar, D. I., Benavides-Bolaños, J. A., Zúñiga-Escobar, O., & Muñoz-Perea, C. G. (2018). Photosynthesis and biomass yield in Tabasco pepper, radish and maize subjected to magnetically treated water. Corpoica Ciencia & Tecnología Agropecuaria, 19(2), 307-321. https://doi.org/10.21930/rcta.vol19_num2_art:537

Ospina-Salazar, D. I., Rachmilevitch, S., Cuervo-Jurado, S., & Zúñiga-Escobar, O. (2021). Biomass accumulation and physiological responses of tomato plants to magnetically–treated water in hydroponic conditions. Bioarxiv. https://doi.org/10.1101/2021.09.21.461287

Pang, X. F., & Bo, D. (2008). The changes of macroscopic features and microscopic structures of water under influence of magnetic field. Physica B Condensed Matter, 403(19-20), 3571-3577. https://doi.org/10.1016/j.physb.2008.05.032

Pérez-Gutiérrez, A., Garruña, R., Vázquez, P., & Latournerie, L. (2016). Growth, phenology and chlorophyll fluorescence of habanero pepper (Capsicum chinense Jacq.) under water stress conditions. Acta Agronómica, 66(2), 214-220. https://doi.org/10.15446/acag.v66n2.55897

Phimchan, P., Techawongstien, S., & Bosland, P. W. (2012). Impact of drought stress on the accumulation of capsaicinoids in Capsicum cultivars with different initial capsaicinoid levels. American Society for Horticultural Science, 47(9), 1204-1209. https://doi.org/10.21273/HORTSCI.47.9.1204

Rachmilevitch, S., Lambers, H., & Huang, B. (2006). Root respiratory characteristics associated with plant adaptation to high soil temperature for geothermal and turf-type Agrostis species. Journal of Experimental Botany, 57(3), 623-631. https://doi.org/10.1093/jxb/erj047

Ripullone, F., Guerrieri, M. R., Nole, A., Magnani, F., & Borghetti, M. (2007). Stomatal conductance and leaf water potential responses to hydraulic conductance variation in Pinus pinaster seedlings. Trees, 21(3), 371-378. https://doi.org/10.1007/s00468-007-0130-6

Sadeghipour, O., Aghaei, P. (2013). Improving the growth of cowpea (Vigna unguiculata L. Walp.) by magnetized water. Journal of Biodiversity and Environmental Sciences, 3, 37-43.

Schenk, H. J., Steppe, K, Jansen, S. (2015) Nanobubbles: a new paradigm for air-seeding in xylem. Trends in Plant Sciences, 20(4), 199-205. https://doi.org/10.1016/j.tplants.2015.01.008

Schenk, H. J., Espino, S., Romo, D. M., Nima, N., Do, A. Y. T., Michaud, J. M., Papahadjopoulos-Sternberg, B., Yang, J., Zuo, Y. Y., Steppe, K., Jansen, S. (2017). Xylem surfactants introduce a new element to the cohesion-tension theory. Plant Physiol, 173(2), 1177-1196. https://doi.org/10.1104/pp.16.01039

Sullivan, G. M., & Feinn, R. (2012). Using effect size—or why the P value is not enough. Journal of Graduate Medical Education, 4(3), 279-282. https://doi.org/10.4300/jgme-d-12-00156.1

Surendran, U., Sandeep, O., & Joseph, E. J. (2016). The impacts of magnetic treatment of irrigation water on plant, water and soil characteristics. Agricultural Water Management, 178, 21-29. https://doi.org/10.1016/j.agwat.2016.08.016

Valentovič, P., Luxová, M., Kolarovič, L., & Gašparíková, O. (2006). Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant Soil & Environment, 52(4), 186-191. https://doi.org/10.17221/3364-pse

Yusuf, K. O., & Ogunlela, A. O. (2017). Effects of deficit irrigation on the growth and yield of tomato (Solanum lycopersicum) irrigated with magnetized water. Environmental Engineering and Management Journal, 73(1), 59-68. https://erem.ktu.lt/index.php/erem/article/view/14138

Zúñiga O, Benavides J. A., Ospina-Salazar D. I., Jiménez C. O., Gutiérrez M. A. (2016) Tratamiento magnético de agua de riego y semillas en agricultura. Ingeniería y competitividad. 18(2), 217-32. https://doi.org/10.25100/iyc.v18i2.2170

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

149 | 63




 

Creative Commons License Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2022 Ciencia y Tecnología Agropecuaria