Resumen
La gran diversidad de la quinua permite variaciones en el desempeño fisiológico, productivo y composicional. El objetivo de este estudio fue evaluar seis cultivares de quinua a través de las respuestas fisiológicas y nutricionales de sus semillas. Se identificaron diferentes dinámicas en la altura de las plantas y en el número de hojas que se ajustaron a un modelo sigmoidal con R2 mayor a 0,97 y 0,77, respectivamente. La concentración de clorofila varió a través de las fases fenológicas, al igual que el rendimiento cuántico máximo del fotosistema II. Se encontraron diferencias en los granos de quinua entre las coordenadas colorimétricas del CIEL*a*b* y el contenido de proteínas, carbohidratos y grasas. En este sentido, se determinó que los cultivares de quinua manifiestan diferentes comportamientos biológicos asociados a su carácter genético. Además, se reconoció una relación entre cultivares y la composición de semillas. Estos resultados permitirán a los investigadores estudiar la diferencia significativa entre la precocidad expresada por los cultivares Puno, Nariño y Titicaca y aquellos con un ciclo fenológico más largo como el cultivar Soracá.
Abderrahim, F., Huanatico, E., Segura, R., Arribas, S., Gonzalez, M. C., & Condezo-Hoyos, L. (2015). Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano. Food Chemistry, 183, 83-90. https://doi.org/10.1016/j.foodchem.2015.03.029
Ahmadi, S., Solgi, S., & Sepaskhah, A. (2019). Quinoa: A super or pseudo-super crop? Evidences from evapotranspiration, root growth, crop coefficients, and water productivity in a hot and semi-arid area under three planting densities. Agricultural Water Management, 225, 105784. https://doi.org/10.1016/j.agwat.2019.105784
Alonso-Miravalle, L., & O’Mahony, J. (2018). Composition, protein profile and rheological properties of pseudocereal-based protein-rich ingredients. Foods, 7, 1-17. https://doi.org/10.3390/foods7050073
Antezana-Febres, E., Ibañez-Tremolada, M., García, Y., & Gómez-Pardo, L. (2017). Tolerancia de la quinua (C. quinoa) al efecto combinado sequia - calor en siembras de verano en la costa central del Perú. En VII Congreso Mundial de La Quinua y Otros Granos Andinos (pp. 1-19), Tapaca, Chile.
AOAC. (2016). Official Methods of Analysis of the Association of Official Analytical Chemists (20th ed.). AOAC International.
Bazile, D., Bertero, H. D., & Nieto, C. (2014). Estado del arte de la quinua en el mundo 2013. FAO, CIRAD.
Bazile, D., Jacobsen, S.-E., & Verniau, A. (2016b). The Global Expansion of Quinoa: Trends and Limits. Frontiers in Plant Science, 7, 1-6. https://doi.org/10.3389/fpls.2016.00622
Bazile, D., Pulvento, C., Verniau, A., Al-Nusairi, M. S., Ba, D., Breidy, J., Hassan, L., Mohammed, M., Mambetov, O., Otambekova, M., Sepahvand, N., Shams, A., Souici, D., Miri, K., & Padulosi, S. (2016a). Worldwide evaluations of quinoa: Preliminary results from post international year of quinoa FAO projects in nine countries. Frontiers in Plant Science, 7, 1-10. https://doi.org/10.3389/fpls.2016.00850
Carranza, C., Lanchero, O., Miranda, D., & Chaves, B. (2009). Análisis del crecimiento de lechuga (Lactuca sativa L.) ‘Batavia’ cultivada en un suelo salino de la Sabana de Bogotá. Agronomía Colombiana, 27(1), 41-48. https://revistas.unal.edu.co/index.php/agrocol/article/view/11330m
Delgado, A., Palacios, J., & Betancourt, C. (2009). Evaluación de 16 genotipos de quinua dulce (Chenopodium quinoa Willd.) en el municipio de Iles, Nariño (Colombia). Agronomía Colombiana, 27(2), 159-167. https://revistas.unal.edu.co/index.php/agrocol/article/view/11125
Ekman, Á., Hayden, D., Dehesh, K., Bülow, L., & Stymne, S. (2008). Carbon partitioning between oil and carbohydrates in developing oat (Avena sativa L.) seeds. Journal of Experimental Botany, 59(15), 4247-4257. https://doi.org/10.1093/jxb/ern266
Emendack, Y., Sanchez, J., Hayes, C., Nesbitt, M., Laza, H., & Burke, J. (2021). Seed-to-seed early-season cold resiliency in sorghum. Scientific reports, 11, 7801. https://doi.org/10.1038/s41598-021-87450-1
Escribano, J., Cabanes, J., Jiménez-Atiénzar, M., Ibañez-Tremolada, M., Gómez-Pando, L. R., García-Carmona, F., & Gandía-Herrero, F. (2017). Characterization of betalains, saponins and antioxidant power in differently colored quinoa (Chenopodium quinoa) varieties. Food Chemistry, 234, 285-294. https://doi.org/10.1016/j.foodchem.2017.04.187
Eustis, A., Murphy, K., & Barrios-Masias, F. (2020). Leaf gas exchange performance of ten quinoa genotypes under a simulated heat wave. Plants, 8(81), 1-15. https://doi.org/10.3390/plants9010081
Fghire, R., Anaya, F., Ali, O. I., Benlhabib, O., Ragab, R., & Wahbi, S. (2015). Physiological and photosynthetic response of quinoa to drought stress. Chilean Journal of Agricultural Research, 75(2), 174-183. https://doi.org/10.4067/S0718-58392015000200006
García-Parra, M., García-Molano, J., & Deaquiz-Oyola, Y. (2019). Physiological performance of quinoa (Chenopodium quinoa Willd.) under agricultural climatic conditions in Boyacá, Colombia. Agronomía Colombiana, 37(2), 160-168. https://doi.org/10.15446/agron.colomb.v37n2.76219
García-Parra, M., Stechauner-Rohringer, R., Garcia-Molano, J. F., & Ortiz-Gonzalez, D. (2020b). Analysis of the growth and morpho-physiological performance of three cultivars of Colombian quinoa grown under a greenhouse. Revista de Ciencias Agroveterinarias, 19(1), 73-83. https://doi.org/10.5965/223811711912020073
García-Parra, M., Zurita-Silva, A., Stechauner-Rohringer, R., Roa-Acosta, D., & Jacobsen, S. E. (2020a). Quinoa (Chenopodium quinoa Willd.) and its relationship with agroclimatic characteristics: A Colombian perspective. Chilean Journal of Agricultural Research, 80(2), 290-302. https://doi.org/10.4067/S0718-58392020000200290
Garcia, M., Carvajal, D. C., & García, J. F. (2018). Evaluación del efecto de la fertilización química y orgánica en la composición bromatológica de semillas de quinua (Chenopodium quinoa Willd) en Boyacá - Colombia. Revista de Investigación Agraria y Ambiental, 9(2), 99-108. https://doi.org/10.22490/21456453.2282
Guerrero, P., Hurtado-Salazar, A., & Ceballos-Aguirre, N. (2017). Estudio técnico y económico de cuatro variedades de quinua en la región andina central de Colombia. Luna azul, 46(1), 1-10. https://doi.org/10.17151/luaz.2018.46.10
Hinojosa, L., González, J., Barrios-Masias, F., Fuentes, F., & Murphy, K. (2018). Quinoa Abiotic Stress Responses: A Review. Plants, 7(4). https://doi.org/10.3390/plants7040106
Hussain, M. I., Al-Dakheel, A. J., & Reigosa, M. J. (2018). Genotypic differences in agro-physiological, biochemical and isotopic responses to salinity stress in quinoa (Chenopodium quinoa Willd.) plants: Prospects for salinity tolerance and yield stability. Plant Physiology and Biochemistry, 129, 411-420. https://doi.org/10.1016/j.plaphy.2018.06.023
Issa-Ali, O., Fghire, R., Anaya, F., Benlhabib, O., & Wahbi, S. (2019). Physiological and morphological responses of two quinoa cultivars (Chenopodium quinoa Willd.) to drought stress. Gesunde Pflanzen, 71(2), 123-133. https://doi.org/10.1007/s10343-019-00460-y
Jayme-Oliveira, A., Ribeiro, W., Ramos, R., Ziviani, M., & Jakelaitis, G. (2017). Amaranth, quinoa, and millet growth and development under different water regimes in the Brazilian Cerrado. Pesquisa Agropecuaria Brasileira, 52(8), 561-571. https://doi.org/10.1590/S0100-204X2017000800001
Li, G., & Zhu, F. (2018). Quinoa starch: structure, properties, and applications. Carbohydrate Polymers, 181 (11), 851–861. https://doi.org/10.1016/j.carbpol.2017.11.067
Li, Y., He, N., Hou, J., Xu, L., Lui, C., Zhang, J., Wang, Q., Zhang, X., & Wu, X. (2018). Factors influencing leaf chlorophyll content in natural forests at the biome scale. Frontiers in Ecology and Evolution, 6(64), 1-10. https://doi.org/10.3389/fevo.2018.00064
Liu, J-H., Yan, Y., Ali, A., Yu, M-F., Xu, Q-J., Shi, P-J. & Chen, L. (2018). Simulation of crop growth, time to maturity and yield by an improved sigmoidal model. Scientific Reports, 8. https://doi.org/10.1038/s41598-018-24705-4
Medina, W., Skurtys, O., & Aguilera, J. M. (2010). Study on image analysis application for identification quinoa seeds (Chenopodium quinoa Willd) geographical provenance. LWT - Food Science and Technology, 43(2), 238-246. https://doi.org/10.1016/j.lwt.2009.07.010
Melgarejo, L. M. (2010). Experimentos en fisiología vegetal. Universidad Nacional de Colombia.
Melo, D. (2016). Studio di adattabilità colturale della quinoa (Chenopodium quinoa Willd.) in italia settentrionale [dissertation, Università Cattolica del Sacro Cuore di Piacenza]. http://tesionline.unicatt.it/handle/10280/35878
Murphy, K., & Matanguihan, J. (2015). Quinoa improvement and sustainable production. John Wiley and Sons. https://doi.org/10.1002/9781118628041
Navruz-Varli, S., & Sanlier, N. (2016). Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). Journal of Cereal Science, 69, 371-376. https://doi.org/10.1016/j.jcs.2016.05.004
Pinedo-Taco, R., Gómez-Pando, L., & Julca-Ortidiano, A. (2020). Environmental sustainability of quinoa production (Chenopodium quinoa Willd.) in the inter-Andean valleys of Peru. Revista Ciencia y Tecnología Agropecuaria. 21(3), 1-17. https://doi.org/0.21930/rcta.vol21_num3_art:1309
Präger, A., Munz, S., Nkebiwe, P., Mast, B., & Graeff-Hönninger, S. (2018). Yield and quality characteristics of different quinoa (Chenopodium quinoa Willd.) cultivars grown under field conditions in southwestern Germany. Agronomy, 8(10), 197. https://doi.org/10.3390/agronomy8100197
Rasouli, F., Kiani-Pouya, A., Tahir, A., Shabala, L., Chen, Z., & Shabala, S. (2021). A comparative analysis of stomatal traits and photosynthetic responses in closely related halophytic and glycophytic species under saline conditions. Environmental and Experimental Botany, 181(1), 1-10. https://doi.org/10.1016/j.envexpbot.2020.104300
Ramos-Montaño, C. (2020). Effects of vehicle emissions on physiology and health of five urban tree species in Bogota, Colombia. Revista de Biología Tropical, 68(3), 1001-1015. https://doi.org/10.15517/rbt.v68i3.40248
Reguera, M., Conesa, C. M., Gil-Gómez, A., Haros, C. M., Pérez-Casas, M. Á., Briones-Labarca, V., & Bascuñán-Godoy, L. (2018). The impact of different agroecological conditions on the nutritional composition of quinoa seeds, PeerJ, 14(6), 1-20. https://doi.org/10.7717/peerj.4442
Riccardi, M., Mele, G., Pulvento, C., Lavini, A., D’Andria, R., & Jacobsen, S. E. (2014). Non-destructive evaluation of chlorophyll content in quinoa and amaranth leaves by simple and multiple regression analysis of RGB image components. Photosynthesis Research, 120(3), 263-272. https://doi.org/10.1007/s11120-014-9970-2
Roa-Acosta, D. F., Bravo-Gómez, J. E., García-Parra, M. A., Rodríguez-Herrera, R., & Solanilla-Duque, J. F. (2020). Hyper-protein quinoa flour (Chenopodium quinoa Willd): Monitoring and study of structural and rheological properties. LWT - Food Science and Technology, 121(108952), 1-7. https://doi.org/10.1016/j.lwt.2019.108952
Romero, G., Heredia, A., & Chaparro-Zambrano, H. (2018). Germinative potential in quinoa (Chenopodium quinoa Willd.) seeds stored under cool conditions. Revista U.D.C.A Actualidad y Divulgación Científica, 21(2), 341-350. https://doi.org/10.31910/rudca.v21.n2.2018.1076
Ruiz, K. B., Biondi, S., Oses, R., Acuña-Rodríguez, I. S., Antognoni, F., Martinez-Mosqueira, E. A., Caulibaly, A., Canahua-Murillo, A., Pinto, M., Zurita-Silva, A., Bazile, D., Jacobsen, S-E., & Molina-Montenegro, M. A. (2014). Quinoa biodiversity and sustainability for food security under climate change. A review. Agronomy for Sustainable Development, 34(2), 349-359. https://doi.org/10.1007/s13593-013-0195-0
Saad-Allah, K. M., & Youssef, M. S. (2018). Phytochemical and genetic characterization of five quinoa (Chenopodium quinoa Willd.) genotypes introduced to Egypt. Physiology and Molecular Biology of Plants, 24(4), 617-629. https://doi.org/10.1007/s12298-018-0541-4
Sakoda, K., Yamori, W., Shimada, T., Sugano, S., Hara-Nishimura, I., & Tanaka, Y. (2020). Higher Stomatal Density Improves Photosynthetic Induction and Biomass Production in Arabidopsis Under Fluctuating Light. Frontiers in Plant Science, 11, 589603. https://doi.org/10.3389/fpls.2020.589603
Shabala, S., Hariadi, Y., & Jacobsen S. E. (2013). Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na+ loading and stomatal density. Journal of Plant Physiology, 170(10), 906-914. https://doi.org/10.1016/j.jplph.2013.01.014
Sosa-Zuniga, V., Brito, V., Fuentes, F., & Steinfort, U. (2017). Phenological growth stages of quinoa (Chenopodium quinoa) based on the BBCH scale. Annals of Applied Biology, 171(1), 117-124. https://doi.org/10.1111/aab.12358
Stikic, R., Glamoclija, D., Demin, M., Vucelic-Radovic, B., Jovanovic, Z., Milojkovic-Opsenica, D., & Milovanovic, M. (2012). Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. Journal of Cereal Science, 55(2), 132-138. https://doi.org/10.1016/j.jcs.2011.10.010
Taiz, L., & Zeiger, E. (2006). Fisiología vegetal. Ed. Universitat Jaume.
Torres, J., Vargas, H., Corredor, G., & Reyes, L. (2000). Caracterización morfoagronómica de diecinueve cultivares de quinua (Chenopodium quinoa Willd.) en la sabana de Bogotá, Agronomía Colombiana, 17, 60-68. https://revistas.unal.edu.co/index.php/agrocol/article/view/21547