Resumen
El objetivo del presente estudio fue investigar la relación entre la producción de papa y los precios de la papa y de los fertilizantes en Colombia utilizando datos de series temporales del 2003-2018. Se utilizó el análisis de cointegración de Johansen y el modelo de corrección de errores y se realizarEl objetivo del presente estudio fue investigar la relación entre la producción de papa y los precios de la papa y de los fertilizantes en Colombia utilizando datos de series temporales del 2003-2018. Se utilizó el análisis de cointegración de Johansen y el modelo de corrección de errores y se realizaron pruebas de diagnóstico y de Granger. Los resultados empíricos mostraron que los signos y la magnitud de los coeficientes fueron estadísticamente significativos y que había una fuerte relación causal entre las variables. Los precios de la papa y de los fertilizantes fueron inelásticos y el coeficiente de ajuste de velocidad del 70 % implica que los agricultores tardan poco en responder a los movimientos de los precios. Se puede concluir que los precios de la papa y de los fertilizantes fueron significativos para determinar la capacidad de respuesta de la oferta de papa a corto y largo plazo.on pruebas de diagnóstico y de Granger. Los resultados empíricos mostraron que los signos y la magnitud de los coeficientes fueron estadísticamente significativos y que había una fuerte relación causal entre las variables. Los precios de la papa y de los fertilizantes fueron inelásticos y el coeficiente de ajuste de velocidad del 70 % implica que los agricultores tardan poco en responder a los movimientos de los precios. Se puede concluir que los precios de la papa y de los fertilizantes fueron significativos para determinar la capacidad de respuesta de la oferta de papa a corto y largo plazo.
Agronet. (2020). Potato statistical data. https://www.agronet.gov.co/estadistica/Paginas/home.aspx
Arnade, C., & Kelch, D. (2007). Estimation of area elasticities from a standard profit function. American Journal of Agricultural Economics, 89(3), 727-737. https://doi.org/10.1111/j.1467-8276.2007.01004.x Askari, H., & Cummings, J. (1977). Estimating agricultural supply response with the Nerlove model: A survey. Economic Review, 18(2), 257-292. https://doi.org/10.2307/2525749
Dickey, D., & Fuller, W. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366), 427-431. https://doi.org/10.2307/2286348
Dlamini, D. (2018). Supply response of potato to price and non-price factors in Swaziland. Archives of Business Research, 6(10), 78-85. https://doi.org/10.14738/abr.610.5248
E-views (Version 11.0). (2020). Innovative solutions for econometric analysis, forecasting and simulation. IHS Global Incorporation.
Engle, R., & Granger, C. (1987). Cointegration and error correction: representation, estimation and testing. Econometrica, 2(55), 251-276. https://doi.org/10.2307/1913236
Federación Colombiana de Productores de Papa (Fedepapa). (2020). Informe trimestral de coyuntura económica del subsector papa III trimestre - 2020. https://fedepapa.com/wp-content/uploads/2021/09/BOLETIN-ECONOMICO-N%C2%B013.pdf
Food and Agriculture Organization of the United Nations Statistics Division (FAOSTAT). (2020). Statistical data. http://www.fao.org/faostat/es/#data/QC
Granger, C. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3), 424-438. https://doi.org/10.2307/1912791
Hamilton, J. (1994). Time Series Analysis. Princeton University Press. https://doi.org/10.1515/9780691218632
Henneberry, S., & Tweeten, L. (1991). A review of international agricultural supply response. Journal of International Food and Agribusiness Marketing, 2(3-4), 49-95. https://doi.org/10.1300/J047v02n03_02
Hotelling, H. (1932). Edgworth’s taxation paradox and the nature of demand and supply functions. Political Economics, 40, 577-616. https://doi.org/10.1300/J047v02n03_02
Huq, A., & Arshad, F. (2010). Supply response of potato in Bangladesh: A vector error correction approach. Journal of Applied Sciences, 10(11), 895-902. https://dx.doi.org/10.3923/jas.2010.895.902
Johansen, S. (1988). Statistical analysis of cointegrating vectors. Journal of Economic Dynamics and Control, 12(2), 231-254. https://doi.org/10.1016/0165-1889(88)90041-3
Khan, S., Faisal, M., Haq, Z., Ghaffar, F., Khan, A., & Khan, I. (2018). Supply response of rice using time series data: Lessons from Khyber Pakhtunkhwa Province, Pakistan. Journal of the Saudi Society of Agricultural Sciences, 18(4), 458-461. https://doi.org/10.1016/j.jssas.2018.03.001
Kohli, D. (1996). Supply response in agriculture: A review of methodologies. National Council of Applied Economics. https://www.ncaer.org/publication_details.php?pID=140&pID=140
Lawrence, J. (2012). Christopher A. Sims and vector autoregressions. Scandinavian Journal of Economics, 114(4), 1082-1104. https://doi.org/10.1111/j.1467-9442.2012.01737.x
Lutkepohl, H. (2005). New Introduction to Multiple Time Series Analysis (1st ed.). https://link.springer.com/book/10.1007/978-3-540-27752-1#toc
Mesike, C., Okoh, R., & Inoni, O. (2010). Supply response of rubber farmers in Nigeria: An application of vector error correction model. Agricultural Journal, 5(3), 146-150. http://dx.doi.org/10.3923/aj.2010.146.150
Ministerio de Agricultura y Desarrollo Rural (MADR). (2020). Cadena de la papa. Indicadores e instrumentos. https://sioc.minagricultura.gov.co/Papa/Documentos/2019-03-31%20Cifras%20Sectoriales.pdf
Mose, L., Burger, K., & Kuvyenhoven, A. (2007). Aggregate supply response to price incentives: the case of smallholder maize production in Kenya. African Crop Science, 8, 1271-1275.
Nerlove, M. (1958). The dynamics of supply response: Estimation of farmers’ response to price. Johns Hopkins University Press.
Obayelu, A., & Ebute, S. (2016). Assessment of cassava supply response in Nigeria using vector error correction model (VECM). Agricultura, 13(1-2), 79-86. https://doi.org/10.1515/agricultura-2017-0010
Obayelu, A., & Salau, A. (2010). Agricultural response to prices and exchange rate in Nigeria: Application of cointegration and vector error correction model. Journal of Agricultural Science, 2, 73-81. https://doi.org/10.1080/09766898.2010.11884656
Osorio, I. Gutiérrez, P., & Marín, M. (2012) Revisión: Spongospora subterranea f.sp. subterranea y su virus asociado Potato Mop-Top Virus (PMTV), dos patógenos reemergentes en los cultivos de papa de Colombia. Revista Facultad Nacional de Agronomía - Medellín, 65(1), 6361-6378.
Pekmeczci, A., & Dilek, M. (2014). The comparison of performances of widely used cointegration tests. Simulation and Computation, 46(5), 2070-2080. https://doi.org/10.1080/03610918.2014.889157
Shahzad, M., Jan, A., Ali, S., & Ullah, R. (2018). Supply response analysis of tobacco growers in Khyber Pakhtunkhwa: an ARDL approach. Field Crops Research, 218, 195-200. https://doi.org/10.1016/j.fcr.2018.01.004
Soontaranurak, K. & Dawson, P. (2015). Rubber acreage supply response in Thailand: A cointegration approach. The Journal of Developing Areas, 49(2) 23-38 https://doi.org/10.1353/jda.2015.0009
Tripathi, A., & Prasad, A. (2009). Estimation of agricultural supply response by cointegration approach. The Indian Economic Journal, 57(1), 106-131. https://doi.org/10.1177%2F0019466220090106
Zhang, H., Xu, F., Wu, Y., Hu, H., & Dai, X. (2017). Progress of potato staple food research and industry development in China. Journal of Integrative Agriculture, 16(12), 2924-2932. https://doi.org/10.1016/S2095-3119(17)61736-2