Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio

Agricultura de conservación como estrategia potencial para incrementar la calidad del suelo en agroecosistemas de Colombia

Universidad Central
Universidad Central
Universidad Central
conjunto total de datos conjunto mínimo de datos conservación indicadores índice de calidad de suelos ordenación de tierras sostenible

Resumen

La agricultura de conservación (AC) se ha promovido en América Latina como una alternativa para la gestión sostenible del suelo debido a su capacidad para prevenir la degradación edáfica, mejorar la productividad de los cultivos, minimizar el impacto del cambio climático y contribuir a la protección de la biodiversidad edáfica. El objetivo de la investigación fue evaluar el efecto de la AC sobre la calidad del suelo (CS) en cinco agroecosistemas del municipio de Cachipay (Cundinamarca): una cronosecuencia de cultivos de café (CC) de (1) 5 (CC5) y (2) 10 (CC10) años de establecimiento, sistemas de policultivos (SPC) de (3) 1 (SPC1) y (4) 6 (SPC6) años de edad, y (5) un agroecosistema en descanso (F, del inglés Fallow). Para lo cual, se determinó un conjunto mínimo de datos (MDS, del inglés Minimum Data Sets) a partir de un análisis de componentes principales. El índice de estabilidad de agregados, la estabilidad de agregados, la humedad, el diámetro medio geométrico, la conductividad eléctrica, la densidad de heterótrofos totales y las catalasas se seleccionaron en el MDS. Los mayores valores del índice de calidad se obtuvieron en: CC5 (0,71), CC10 (0,67), SPC6 (0,66), SPC1 (0,65) vs. F (0,60). El estudio evidenció el efecto positivo de las prácticas de AC basadas en una mínima alteración del suelo, una menor dependencia de los agroquímicos, una cobertura orgánica permanente y los sistemas agrícolas diversificados sobre la CS. El enfoque MDS-SQI representa una herramienta práctica, prometedora y adecuada para hacer seguimiento de la CS en agroecosistemas.

 

Ardila-Garcia, V., V. E. Vallejo, y L. P. . Plazas-Navarro. «Agricultura De conservación Como Estrategia Potencial Para Incrementar La Calidad Del Suelo En Agroecosistemas De Colombia». Ciencia Y Tecnología Agropecuaria, vol. 23, n.º 3, diciembre de 2022, doi:10.21930/rcta.vol23_num3_art:2674.

Abd-Elwahed, M. S. (2019). Effect of long-term wastewater irrigation on the quality of alluvial soil for agricultural sustainability. Annals of Agricultural Sciences, 64(2), 151-160. https://doi.org/10.1016/j.aoas.2019.10.003

Andrades, M., Moliner, A., & Masaguer, A. (2015). Prácticas de edafología: Métodos didácticos para análisis de suelos. Universidad de Rioja. https://publicaciones.unirioja.es/catalogo/monografias/mdaa15.shtml

Andrews, S. S., Karlen, D. L., & Cambardella, C. A. (2004). The soil management assessment framework: a quantitative soil quality evaluation method. Soil Science Society of America Journal, 68, 1945-1962. https://doi.org/10.2136/sssaj2004.1945

Andrews, S. S., Karlen, D. L., & Mitchell, J. P. (2002). A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agriculture, Ecosystems & Environment, 90(1), 25-45. https://doi.org/10.1016/S0167-8809(01)00174-8

Askari, M. S., & Holden, N. M. (2015). Quantitative soil quality indexing of temperate arable management systems. Soil and Tillage Research, 150, 57-67. https://doi.org/10.1016/J.STILL.2015.01.010

Basche, A. D., Kaspar, T. C., Archontoulis, S. V., Jaynes, D. B., Sauer, T. J., Parkin, T. B., & Miguez, F. E. (2016). Soil water improvements with the long-term use of a winter rye cover crop. Agricultural Water Management, 172, 40-50. https://doi.org/10.1016/j.agwat.2016.04.006

Choudhary, M., Datta, A., Jat, H. S., Yadav, A. K., Gathala, M. K., Sapkota, T. B., & Ladha, J. K. (2018). Changes in soil biology under conservation agriculture based sustainable intensification of cereal systems in Indo-Gangetic Plains. Geoderma, 313, 193-204. https://doi.org/10.1016/j.geoderma.2017.10.041

Cubillos, A. M., Vallejo, V. E., Arbeli, Z., Ter, W., Dick, R. P., Molina, C. H., & Roldan, F. (2016). Effect of the conversion of conventional pasture to intensive silvopastoral systems on edaphic bacterial and ammonia oxidizer communities in Colombia. European Journal of Soil Biology Journal, 72, 42-50. https://doi.org/10.1016/j.ejsobi.2015.12.003

Das, S., Bhattacharyya, R., Das, T. K., Sharma, A. R., Dwivedi, B. S., Meena, M. C., Dey, A., Biswas, S., Aditya, K., Aggarwal, P., Biswas A. K., & Chaudhari, S. K. (2021). Soil quality indices in a conservation agriculture-based rice-mustard cropping system in North-western Indo-Gangetic Plains. Soil and Tillage Research, 208, 104914. https://doi.org/10.1016/j.still.2020.104914

Diniz, L. T., Ramos, M. L. G., Junior, W. Q. R., Cruz, A. F., De Franca, L. V., Diniz, B. T., & Amabile, R. F. (2016). Effect of nitrogen fertilization on soil microbial biomass in an Oxisol cultivated with irrigated barley in the Brazilian Cerrado. Acta agronómica, 65(2), 137-143. https://doi.org/10.15446/acag.v65n2.46432

Dubey, R. K., Dubey, P. K., & Abhilash, P. C. (2019). Sustainable soil amendments for improving the soil quality, yield and nutrient content of Brassica juncea (L.) grown in different agroecological zones of eastern Uttar Pradesh, India. Soil and Tillage Research, 195, 1-11. https://doi.org/10.1016/j.still.2019.104418

EPA. (2004). Method 9045D. Soil and waste pH.

FAO. (2014). Agricultura de conservación. http://www.fao.org/conservation-agriculture/es/

FAO. (2015). Soil is a non-renewable resource.

FAO & ITPS. (2015). Status of the World’s Soil Resources (SWSR) - Main Report.

Fernández, L., Rojas, N., Roldán, T., Carrillo, M., Ramírez, M., Zegarra, H., Hernández, R., Reyes, R., Flores, D., & Arce, D. (2006). Manual de técnicas de análisis de suelos aplicadas a la remediación de sitios contaminados. Instituto Mexicano del Petróleo, Secretaría de Medio Ambiente y Recursos Naturales, Instituto Nacional de Ecología.

Guo, L., Sun, Z., Ouyang, Z., Han, D., & Li, F. (2017). A comparison of soil quality evaluation methods for Fluvisol along the lower Yellow River. Catena, 152, 135-143. https://doi.org/10.1016/j.catena.2017.01.015

Gura, I., & Mnkeni, P. N. S. (2019). Crop rotation and residue management effects under no till on the soil quality of a Haplic Cambisol in Alice, Eastern Cape, South Africa. Geoderma, 337, 927-934. https://doi.org/10.1016/j.geoderma.2018.10.042

Gura, I., Mnkeni, P., Du Preez, C., & Barnard, J. (2022). Short-term effects of conservation agriculture strategies on the soil quality of a Haplic Plinthosol in Eastern Cape, South Africa. Soil and Tillage Research, 220 (July 2021), 13. https://doi.org/10.1016/j.still.2022.105378

Hammer, Ø., Harper, D. A., & Ryan, P. D. (2001). PAST: paleontological statistic software package for education and data analysis. Palaeontological association. Palaeontologia Electronica, 4(1), 9. https://palaeo-electronica.org/2001_1/past/issue1_01.htm

Hong, Y., Heerink, N., Zhao, M., & van der Werf, W. (2019). Intercropping contributes to a higher technical efficiency in smallholder farming: Evidence from a case study in Gaotai County, China. Agricultural Systems, 173, 317-324. https://doi.org/10.1016/j.agsy.2019.03.007

IGAC. (1990). Métodos analíticos del laboratorio de suelos.

IGAC. (2014). Códigos para los levantamientos de suelos. http://igacnet2.igac.gov.co/intranet/UserFiles/File/procedimientos/instructivos/I40100-06-14.V1Codigos para los levantamientos de suelos.pdf

Johnson, J., & Temple, K. (1964). Some variable affecting the measurement of “catalase activity” in soil. Soil Science Society of America, 28, 207-209. https://doi.org/10.1007/s13762-018-1959-5

Karlen, D. L., & Stott, D. E. (1994). A framework for evaluating physical and chemical indicators of soil quality. In J. W. Doran, D. C. Leman, D. F. Bezdicek, & B. A. Stewart (Eds.), Defining soil quality for a sustainable environment; Proceedings of a symposium, Minneapolis, MN, USA, 1992 (pp. 53-72). Soil Science Society of America. https://doi.org/10.2136/sssaspecpub35.c4

Kongor, J. E., Boeckx, P., Vermeir, P., Van de Walle, D., Baert, G., Afoakwa, E. O., & Dewettinck, K. (2019). Assessment of soil fertility and quality for improved cocoa production in six cocoa growing regions in Ghana. Agroforestry Systems, 93(4), 1455-1467. https://doi.org/10.1007/s10457-018-0253-3

Leite Chaves, H. M., Concha Lozada, C. M., & Gaspar, R. O. (2017). Soil quality index of an Oxisol under different land uses in the Brazilian savannah. Geoderma Regional, 10, 183-190. https://doi.org/10.1016/j.geodrs.2017.07.007

Lerner, A. M., Zuluaga, A. F., Chará, J., Andrés E., & Searchinger, T. (2017). Sustainable cattle ranching in practice: Moving from theory to planning in Colombia’s Livestock Sector. Environmental Management, 60(2), 176-184. https://doi.org/10.1007/s00267-017-0902-8

Li, P., Shi, K., Wang, Y., Kong, D., Liu, T., Jiao, J., Manqiang, L., Huixin, L., & Hu, F. (2019). Soil quality assessment of wheat-maize cropping system with different productivities in China: Establishing a minimum data set. Soil and Tillage Research, 190, 31-40. https://doi.org/10.1016/j.still.2019.02.019

Liebig, M. A., Varvel, G. E., & Doran, J. W. (2001). A simple performance-based index for assessing multiple agroecosystem functions. Agronomy & Horticulture, 93(2), 313-318. https://doi.org/10.2134/agronj2001.932313x

Morugán-Coronado, A., Pérez-Rodríguez, P., Insolia, E., Soto-Gómez, D., Fernández-Calviño, D., & Zornoza, R. (2022). The impact of crop diversification, tillage and fertilization type on soil total microbial, fungal and bacterial abundance: A worldwide meta-analysis of agricultural sites. Agriculture, Ecosystems and Environment, 329, 8. https://doi.org/10.1016/j.agee.2022.107867

Nabiollahi, K., Taghizadeh-Mehrjardi, R., Kerry, R., & Moradian, S. (2017). Assessment of soil quality indices for salt-affected agricultural land in Kurdistan Province, Iran. Ecological Indicators, 83, 482-494. https://doi.org/10.1016/j.ecolind.2017.08.001

Nehrani, S. H., Sadegh Askari, M., Saadat, S., Amir Delavar, M., Taheri, M., & Holden, N. M. (2020). Quantification of soil quality under semi-arid agriculture in the Northwest of Iran. Ecological Indicators, 108, 105770. https://doi.org/10.1016/j.ecolind.2019.105770

Nimmo, J. R., & Perkins, K. S. (2002). Aggregate stability and size distribution. In J. H. Dane & G. C. Topp (Eds.), Methods of soil analysis: Part 4 physical methods (pp. 317-328). Soil Science Society of America, Inc. https://doi.org/10.2136/sssabookser5.4.c14

Onet, A., Dincă, L. C., Grenni, P., Laslo, V., Teusdea, A. C., Vasile, D. L., & Crisan, V. E. (2019). Biological indicators for evaluating soil quality improvement in a soil degraded by erosion processes. Journal of Soils and Sediments, 19(5), 2393-2404. https://doi.org/10.1007/s11368-018-02236-9

Page, K. L., Dang, Y. P., & Dalal, R. C. (2020). The ability of conservation agriculture to conserve soil organic carbon and the subsequent impact on soil physical, chemical, and biological properties and yield. Frontiers in Sustainable Food Systems, 4, 31. https://doi.org/10.3389/fsufs.2020.00031

Parihar, C. M., Singh, A. K., Jat, S. L., Dey, A., Nayak, H. S., Mandal, B. N., & Yadav, O. P. (2020). Soil quality and carbon sequestration under conservation agriculture with balanced nutrition in intensive cereal-based system. Soil and Tillage Research, 202, 1-14. https://doi.org/10.1016/j.still.2020.104653

Parra-González, S., & Rodriguez-Valenzuela, J. (2017). Determination of the soil quality index by principal component analysis in cocoa agroforestry system in the Orinoco region, Colombia. Journal of Agriculture and Ecology Research International, 10(3), 1-8. https://doi.org/10.9734/jaeri/2017/31346

Qi Y., Darilek, J. L., Huang, B., Zhao, Y.,, Sun, W., & Gu, Z. (2009). Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma, 149(3-4), 325-334. https://doi.org/10.1016/j.geoderma.2008.12.015

Qiu, X., Peng, D., Wang, H., Wang, Z., & Cheng, S. (2019). Minimum data set for evaluation of stand density effects on soil quality in Larix principis-rupprechtii plantations in North China. Ecological Indicators, 103, 236-247. https://doi.org/10.1016/j.ecolind.2019.04.010

Ranaivoson, L., Naudin, K., Ripoche, A., Affholder, F., Rabeharisoa, L., & Corbeels, M. (2017). Agro-ecological functions of crop residues under conservation agriculture. A review. Agronomy for Sustainable Development, 37(4), 1-17. https://doi.org/10.1007/s13593-017-0432-z

Saurabh, K., Rao, K. K., Mishra, J. S., Kumar, R., Poonia, S. P., Samal, S. K., Roy, H. S., Dubey, A. K., Choubey A. K., Mondal, S., Bhatt, B. P., Verma, M., & Malik, R. K. (2021). Influence of tillage-based crop establishment and residue management practices on soil quality indices and yield sustainability in rice-wheat cropping system of Eastern Indo-Gangetic Plains. Soil and Tillage Research, 206, 1-9. https://doi.org/10.1016/j.still.2020.104841

Schulte, E., & Hopkins, B. (1996). Estimation of organic matter by weight loss-on-ignition. In F. Magdoff et al. (Eds.), Soil Organic Matter: Analysis and Interpretation (pp. 21-31). Soil Science Society of America. https://doi.org/10.2136/sssaspecpub46.c3

Shao, G., Ai, J., Sun, Q., Hou, L., & Dong, Y. (2020). Soil quality assessment under different forest types in the Mount Tai, central Eastern China. Ecological Indicators, 115, 106439. https://doi.org/10.1016/j.ecolind.2020.106439

Sharma, K. L., Grace, J. K., Chandrika, M. S., Vittal, K. P. R., Singh, S. P., Nema, A. K., & Rani, K. U. (2014). Effects of soil management practices on key soil quality indicators and indices in pearl millet (Pennisetum americanum (L.) Leeke)-based system in hot semi-arid Inceptisols. Communications in Soil Science and Plant Analysis, 45(6), 785-809. https://doi.org/10.1080/00103624.2013.867048

Sharma, K. L., Srinivasa Rao, C., Chandrika, D. S., Lal, M., Indoria, A. K., Reddy, K. S., & Srinivas, D. K. (2018). Management practices on soil quality indicators and soil quality indices under post monsoon (Rabi) sorghum (Sorghum bicolor) in rainfed black soils (Vertisols) of Western India. Communications in Soil Science and Plant Analysis, 49(13), 1629-1637. https://doi.org/10.1080/00103624.2018.1474901

Sithole, N. J., Magwaza, L. S., & Mafongoya, P. L. (2016). Conservation agriculture and its impact on soil quality and maize yield: A South African perspective. Soil and Tillage Research, 162, 55-67. https://doi.org/10.1016/j.still.2016.04.014

Sylvester, J., Valencia, J., Verchot, L. V., Chirinda, N., Romero Sanchez, M. A., Quintero, M., & Castro-Nunez, A. (2020). A rapid approach for informing the prioritization of degraded agricultural lands for ecological recovery: A case study for Colombia. Journal for Nature Conservation, 58, 125921. https://doi.org/10.1016/j.jnc.2020.125921

Thierfelder, C., Mwila, M., & Rusinamhodzi, L. (2013). Conservation agriculture in eastern and southern provinces of Zambia: Long-term effects on soil quality and maize productivity. Soil and Tillage Research, 126, 246-258. https://doi.org/10.1016/j.still.2012.09.002

Udom, B. E., & Omovbude, S. (2019). Soil physical properties and carbon/nitrogen relationships in stable aggregates under legume and grass fallow. Acta Ecologica Sinica, 39(1), 56-62. https://doi.org/10.1016/j.chnaes.2018.05.008

Vallejo, V. E., Afanador, L. N., Hernández, M. A., & Parra, D. C. (2018). Effect of the implementation of different agricultural systems on the soil quality from the municipality of Cachipay, Cundinamarca, Colombia. Bioagro, 30(1), 27-38.

Vallejo, V. E., Roldan, F., & Dick, R. P. (2010). Soil enzymatic activities and microbial biomass in an integrated agroforestry chronosequence compared to monoculture and a native forest of Colombia. Biology and Fertility of Soils, 46(6), 577-587. https://doi.org/10.1007/s00374-010-0466-8

Verhulst, N., Carrillo-García, A., Moeller, C., Trethowan, R., Sayre, K. D., & Govaerts, B. (2011). Conservation agriculture for wheat-based cropping systems under gravity irrigation: Increasing resilience through improved soil quality. Plant and Soil, 340(1), 467-479. https://doi.org/10.1007/s11104-010-0620-y

Xun, W., Huang, T., Zhao, J., Ran, W., Wang, B., Shen, Q., & Zhang, R. (2015). Environmental conditions rather than microbial inoculum composition determine the bacterial composition, microbial biomass and enzymatic activity of reconstructed soil microbial communities. Soil Biology and Biochemistry, 90, 10-18. https://doi.org/10.1016/j.soilbio.2015.07.018

Yao, R., Yang, J., Gao, P., Zhang, J., & Jin, W. (2013). Determining minimum data set for soil quality assessment of typical salt-affected farmland in the coastal reclamation area. Soil and Tillage Research, 128, 137-148. https://doi.org/10.1016/j.still.2012.11.007

Zhou, Y., Ma, H., Xie, Y., Jia, X., Su, T., Li, J., & Shen, Y. (2020). Assessment of soil quality indexes for different land use types in typical steppe in the loess hilly area, China. Ecological Indicators, 118, 1-10. https://doi.org/10.1016/j.ecolind.2020.106743

Zou, X., Zhu, X., Zhu, P., Singh, A. K., Zakari, S., Yang, B., Chen, C., & Liu, W. (2021). Soil quality assessment of different Hevea brasiliensis plantations in tropical China. Journal of Environmental Management, 285, 112147. https://doi.org/10.1016/j.jenvman.2021.112147

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

187 | 102 | 13




 

Creative Commons License Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2022 Ciencia y Tecnología Agropecuaria