Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio

Efecto de suplemento proteico sobre la postura y población de colonias de abejas (Apis mellifera L.) comerciales en cultivo polifloral

Facultad de Ciencias Agropecuarias de la Universidad Nacional de Trujillo, Perú. Av. Juan Pablo II s/n
Laboratorio de Citometría, Facultad de Ciencias Biológicas de la Universidad Nacional de Trujillo, Trujillo, Perú. Av. Juan Pablo II s/n
mportaciones Pecuarias S.A.C. Arequipa, Perú. Av. Augusto Perez Aranibar 109
apicultura Apis mellifera abeja alimentación complementaria nutrición dieta artificial

Resumen

El cambio climático y la pérdida de hábitat natural reducen la cantidad y diversidad de polen, contribuyendo con la desnutrición de las abejas, que conlleva a menor postura, disminución en población de abejas y bajo desempeño productivo. Ante esta realidad, se utilizan dietas artificiales con el objetivo de reducir el impacto negativo de la escasez de polen. En el presente estudio, se escogieron 16 colonias de abejas (Apis mellifera) comerciales instaladas en cultivo polifloral. Dichas colonias recibieron dos tratamientos (T0: sin suplemento proteico y T1: con suplemento proteico Prosise ®). Ambos tratamientos recibieron jarabe de azúcar como estimulante (1kg azúcar/1kg de agua) y dos tiras de Wangs ®, con 40mg de tau fluvalinato por cada tira como preventivo contra varroasis. El uso del suplemento proteico aumentó significativamente (p<0.01) el número de marcos con cría (11,88 ± 0,83) y población de abejas (31297,50 ± 2779,30) respecto con las colonias que no fueron suplementadas (9,88 ± 1,13) y (22230,00 ± 2143,70) respectivamente. Nuestros resultados indican que la suplementación proteica aumenta la cría y la población de colonias de abejas comerciales en cultivo polifloral. Además, se recomienda evaluar la digestibilidad, la vida útil, el efecto sobre la producción de miel, acopio de polen. En adición, para una mayor precisión en la formulación de la dieta se aconseja evaluar el aporte nutricional del polen disponible y cubrir las deficiencias con la dieta artificial; no obstante, es más complicado de realizar en cultivos poliflorales que en monoflorales.

Vallenas Sánchez, Y. P. A., Honorio Javes, C. E., Rodríguez Soto, J. C., & Valdivia Camargo, V. (2023). Efecto de suplemento proteico sobre la postura y población de colonias de abejas (Apis mellifera L.) comerciales en cultivo polifloral. Ciencia Y Tecnología Agropecuaria, 24(2). https://doi.org/10.21930/rcta.vol24_num2_art:3058

Ahmad, S., Khan, K.A., Khan, S.A., Ghramh, H.A., & Gul, A. (2021a). Comparative assessment of various supplementary diets on commercial honey bee (Apis mellifera) health and colony performance. PLOS ONE, 16(10), e0258430. https://doi.org/10.1371/journal.pone.0258430

Ahmad, S., Khan, S.A., Khan, K.A., & Li, J. (2021b). Novel insight into the development and function of hypopharyngeal glands in honey bees. Frontiers in Physiology, 11. 615830. https://doi.org/10.3389/fphys.2020.615830

Attia, Y.A., Giorgio, G.M., Addeo, N.F., Asiry, K.A., Piccolo, G., Nizza, A., et al. (2022). COVID-19 pandemic: Impacts on bees, beekeeping, and potential role of bee products as antiviral agents and immune enhancers. Environmental Science and Pollution Research, 29(7), 9592-9605. https://doi.org/10.1007/s11356-021-17643-8

Bakour, M., Laaroussi, H., Ousaaid, D., El Ghouizi, A., Es-Safi, I., Mechchate, H., et al. (2022). Bee bread as a promising source of bioactive molecules and functional properties: An up-to-date review. Antibiotics, 11(2), 203. https://doi.org/10.3390/antibiotics11020203

Branchiccela, B., Castelli, L., Corona, M., Díaz-Cetti, S., Invernizzi, C., Martínez, G., et al. (2019). Impact of nutritional stress on the honeybee colony health. Scientific Reports, 9(1), 10156. https://doi.org/10.1038/s41598-019-46453-9

Camilli, M.P., Barros, D.C.B., Justulin, L.A., Tse, M.L.P., & Orsi, R.O. (2021). Protein feed stimulates the development of mandibular glands of honey bees (Apis mellifera). Journal of Apicultural Research, 60(1), 165-171. https://doi.org/10.1080/00218839.2020.1778922

Canché-Collí, C., Estrella-Maldonado, H., Medina-Medina, L. A., Moo-Valle, H., Calvo-Irabien, L. M., Chan-Vivas, E., et al. (2021). Effect of yeast and essential oil-enriched diets on critical determinants of health and immune function in africanized Apis mellifera. PeerJ, 9, e12164. https://doi.org/10.7717/peerj.12164

De Groot, A.P. (1953) Protein and amino acid requirements of the honeybee (Apis mellifica L.). Physiologia Comparata Oecologia, 3, 197–285.

De Jong, D., da Silva, E.J., Kevan, P.G., & Atkinson, J.L. (2009). Pollen substitutes increase honey bee haemolymph protein levels as much as or more than does pollen. Journal of Apicultural Research, 48(1), 34-37. https://doi.org/10.3896/IBRA.1.48.1.08

DeGrandi-Hoffman, G., Corby-Harris, V., Carroll, M., Toth, A.L., Gage, S., Watkins deJong, E., et al. (2021). The importance of time and place: nutrient composition and utilization of seasonal pollens by european honey bees (Apis mellifera L.). Insects, 12(3), 235. https://doi.org/10.3390/insects12030235

DeGrandi-Hoffman, G., Gage, S.L., Corby-Harris, V., Carroll, M., Chambers, M., Graham, H., et al. (2018). Connecting the nutrient composition of seasonal pollens with changing nutritional needs of honey bee (Apis mellifera L.) colonies. Journal of Insect Physiology, 109, 114-124. https://doi.org/10.1016/j.jinsphys.2018.07.002

DeGrandi-Hoffman, G., Wardell, G., Ahumada-Segura, F., Rinderer, T., Danka, R., & Pettis, J. (2008). Comparisons of pollen substitute diets for honey bees: Consumption rates by colonies and effects on brood and adult populations. Journal of Apicultural Research, 47(4), 265-270. https://doi.org/10.1080/00218839.2008.11101473

Delaplane, K.S., van der Steen, J., & Guzman-Novoa, E. (2013). Standard methods for estimating strength parameters of Apis mellifera colonies. Journal of Apicultural Research, 52(1), 1-12. https://doi.org/10.3896/IBRA.1.52.1.03

Dias, J. M.V.A., Morais, M.M., Francoy, T.M., Pereira, R.A., Turcatto, A.P., & Jong, D. (2018). Fermentation of a pollen substitute diet with beebread microorganisms increases diet consumption and hemolymph protein levels of honey bees (Hymenoptera, Apidae). Sociobiology, 65(4), 760-765. https://doi.org/10.13102/sociobiology.v65i4.3293

FAO/STAT. (2022). Disponible en: https://www.fao.org/faostat/en/#data/QCL

Höcherl, N., Siede, R., Illies, I., Gätschenberger, H., & Tautz, J. (2012). Evaluation of the nutritive value of maize for honey bees. Journal of Insect Physiology, 58(2), 278-285. https://doi.org/10.1016/j.jinsphys.2011.12.001

Hristov, P., Neov, B., Shumkova, R., & Palova, N. (2020). Significance of apoidea as main pollinators. ecological and economic impact and implications for human nutrition. Diversity, 12(7), 280. https://doi.org/10.3390/d12070280

Korošec, M., & Bertoncelj, J. (2020). The importance of bee products in human nutrition. Acta agriculturae Slovenica, 115(2), 223-235. https://doi.org/10.14720/aas.2020.115.2.632

Li, C., Xu, B., Wang, Y., Feng, Q., & Yang, W. (2012). Effects of dietary crude protein levels on development, antioxidant status, and total midgut protease activity of honey bee (Apis mellifera Ligustica). apidologie, 43(5), 576-586. https://doi.org/10.1007/s13592-012-0126-0

Lima, M.V., Soares, K.O., & Evangelista-Rodrigues, A. (2017). Complexo enzimático na alimentação artificial de abelhas africanizadas. Archivos de Zootecnia, 66(255), 413-418. https://doi.org/10.21071/az.v66i255.2518

Manning, R. (2016). Artificial feeding of honeybees based on an understanding of nutritional principles. Animal Production Science, 58(4), 689-703. https://doi.org/10.1071/AN15814

Mattila, H.R., & Otis, G.W. (2006). Influence of pollen diet in spring on development of honey bee (Hymenoptera: Apidae) colonies. Journal of Economic Entomology, 99(3), 604-613. https://doi.org/10.1603/0022-0493-99.3.604

Moreira, I.R.C., Barros, D.C.B., Lunardi, J.S., & Orsi, R.O. (2021). Effect of protein supplementation in the bee Apis mellifera L. exposed to the agrochemical fipronil. Sociobiology, 68(3), e5830-e5830. https://doi.org/10.13102/sociobiology.v68i3.5830

Mortensen, A.N., Jack, C.J., Bustamante, T.A., Schmehl, D.R., & Ellis, J. D. (2019). Effects of supplemental pollen feeding on honey bee (Hymenoptera: Apidae) Colony Strength and Nosema spp. Infection. Journal of Economic Entomology, 112(1), 60-66. https://doi.org/10.1093/jee/toy341

Nainu, F., Masyita, A., Bahar, M.A., Raihan, M., Prova, S.R., Mitra, S., et al. (2021). Pharmaceutical prospects of bee products: special focus on anticancer, antibacterial, antiviral, and antiparasitic properties. Antibiotics, 10(7), 822. https://doi.org/10.3390/antibiotics10070822

Naug, D. (2009). Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biological Conservation, 142(10), 2369-2372. https://doi.org/10.1016/j.biocon.2009.04.007

Negri, P., Villalobos, E., Szawarski, N., Damiani, N., Gende, L., Garrido, M., et al. (2019). Towards precision nutrition: a novel concept linking phytochemicals, immune response and honey bee health. Insects, 10(11), 401. https://doi.org/10.3390/insects10110401

Noordyke, E.R., & Ellis, J.D. (2021). Reviewing the efficacy of pollen substitutes as a management tool for improving the health and productivity of western honey bee (Apis mellifera) Colonies. Frontiers in Sustainable Food Systems, 5. https://www.frontiersin.org/article/10.3389/fsufs.2021.772897

Noordyke, E.R., Santen, E., & Ellis, J.D. (2021). Tracing the fate of pollen substitute patties in western honey bee (Hymenoptera: apidae) colonies. Journal of economic entomology, 114(4), 1421-1430. https://doi.org/10.1093/jee/toab083

Noordyke, E.R., Santen, E., & Ellis, J.D. (2022). Evaluating the strength of western honey bee (Apis mellifera L.) colonies fed pollen substitutes over winter. Journal of Applied Entomology, 146(3), 291-300. https://doi.org/10.1111/jen.12957

Ollerton, J., Winfree, R., & Tarrant, S. (2011). How many flowering plants are pollinated by animals? Oikos, 120(3), 321-326. https://doi.org/10.1111/j.1600-0706.2010.18644.x

Omar, E., Abd-Ella, A.A., Khodairy, M.M., Moosbeckhofer, R., Crailsheim, K., & Brodschneider, R. (2017). Influence of different pollen diets on the development of hypopharyngeal glands and size of acid gland sacs in caged honey bees (Apis mellifera). Apidologie, 48(4), 425-436. https://doi.org/10.1007/s13592-016-0487-x

Paiva, J.P.L.M., Esposito, E., de Morais, G.I., Francoy, T.M., & Morais, M.M. (2019). Effects of ensiling on the quality of protein supplements for honey bees Apis mellifera. Apidologie, 50(4), 414-424. https://doi.org/10.1007/s13592-019-00661-4

Pasquale, G.D., Alaux, C., Conte, Y.L., Odoux, J.-F., Pioz, M., Vaissière, B.E., et al. (2016). Variations in the availability of pollen resources affect honey bee health. PLOS ONE, 11(9), e0162818. https://doi.org/10.1371/journal.pone.0162818

Pasquale, G.D., Salignon, M., Conte, Y.L., Belzunces, L.P., Decourtye, A., Kretzschmar, A., et al. (2013). Influence of pollen nutrition on honey bee health: Do pollen quality and diversity matter? PLOS ONE, 8(8), e72016. https://doi.org/10.1371/journal.pone.0072016

Piou, V., Tabart, J., Hemptinne, J.-L., & Vétillard, A. (2018). Effect of pollen extract supplementation on the varroatosis tolerance of honey bee (Apis mellifera) larvae reared in vitro. Experimental and Applied Acarology, 74(1), 25-41. https://doi.org/10.1007/s10493-017-0198-7

Ricigliano, V.A., Williams, S.T., & Oliver, R. (2022). Effects of different artificial diets on commercial honey bee colony performance, health biomarkers, and gut microbiota. BMC Veterinary Research, 18(1), 52. https://doi.org/10.1186/s12917-022-03151-5

SENAMHI/DRD. (2021). Datos Hidrometeorológicos a nivel nacional. Disponible en: https://www.senamhi.gob.pe/?&p=estaciones

Sereia, M.J., de Toledo, V.V.A., Faquinello, P., Costa-Maia, F.M., de Castro, S.E.S., Ruvolo-Takasusuki, M.C.C., et al. (2010). Lifespan of Africanized honey bees fed with various proteic supplements. Journal of Apicultural Science, 54(2), 37-49.

SPACE Animal Nutrition. (2021). Disponible en: https://www.spaceanimalnutrition.com/

Tawfik, A. I., Ahmed, Z. H., Abdel-Rahman, M. F., & Moustafa, A. M. (2020). Influence of winter feeding on colony development and the antioxidant system of the honey bee, Apis mellifera. Journal of Apicultural Research, 59(5), 752-763. https://doi.org/10.1080/00218839.2020.1752456

Ullah, A., Shahzad, M.F., Iqbal, J., & Baloch, M.S. (2021). Nutritional effects of supplementary diets on brood development, biological activities and honey production of Apis mellifera L. Saudi Journal of Biological Sciences, 28(12), 6861-6868. https://doi.org/10.1016/j.sjbs.2021.07.067

Vercelli, M., Novelli, S., Ferrazzi, P., Lentini, G., & Ferracini, C. (2021). A qualitative analysis of beekeepers’ perceptions and farm management adaptations to the impact of climate change on honey bees. Insects, 12(3), 228. https://doi.org/10.3390/insects12030228

Wang, H., Zhang, S.-W., Zeng, Z.-J., & Yan, W.-Y. (2014). Nutrition affects longevity and gene expression in honey bee (Apis mellifera) workers. Apidologie, 45(5), 618-625. https://doi.org/10.1007/s13592-014-0276-3

Yang, W., Tian, Y., Han, M., & Miao, X. (2017). Longevity extension of worker honey bees (Apis mellifera) by royal jelly: Optimal dose and active ingredient. PeerJ, 5, e3118. https://doi.org/10.7717/peerj.3118

Zhang, G., St. Clair, A.L., Dolezal, A.G., Toth, A.L., & O’Neal, M.E. (2022). Can native plants mitigate climate-related forage dearth for honey bees (Hymenoptera: Apidae)? Journal of Economic Entomology, 115(1), 1-9. https://doi.org/10.1093/jee/toab202

Descargas

Los datos de descargas todavía no están disponibles.

Datos de los fondos

Métricas

1112 | 923




 

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.