Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio

Levaduras: probióticos y prebióticos que mejoran la producción animal

Corporación Colombiana de Investigación Agropecuaria (Agrosavia)
##plugins.generic.jatsParser.article.authorBio##
×

Marilce Castro

Investigadora, Programa Nacional de Fisiología y Nutrición Animal, Laboratorio de Microbiología Molecular, C.I. Tibaitatá.
Corporación Colombiana de Investigación Agropecuaria (Agrosavia)
##plugins.generic.jatsParser.article.authorBio##
×

Fernando Rodríguez

Investigador PhD, Programa Nacional de Fisiología y Nutrición Animal, Laboratorio de Microbiología Molecular, C.I. Tibaitatá.
Levaduras Mananos Antibióticos Crecimiento Monogástricos

Resumen

A fin de reducir el uso indiscriminado de antibióticos en la producción animal, se ha explorado el uso de diversas alternativas entre las que se encuentran probióticos, prebióticos y simbióticos los cuales representan un avance terapéutico potencialmen­te significativo y seguro. Los probióticos son microorganismos vivos que agregarse como suplemento en la dieta, favorecen la digestión y ayudan al mantenimiento del equilibrio de la flora microbiana en el intestino. Los prebióticos son ingredientes no digeribles de la dieta que estimulan el crecimiento o la actividad de uno o más tipos de bacterias benéficas en el colon. Los simbióticos combinan en sus formulaciones principios prebióticos y probióticos que actúan sinérgicamente. Estos productos al ser suministrados directamente a los animales mejoran su metabolismo, salud y produc­ción. Entre los probióticos se cuentan las levaduras que inducen efectos positivos en términos de desempeño productivo en especies monogástricas, pero no pueden colo­nizar el tracto digestivo. En monogástricos los principales efectos de la suplementación con levaduras y sus derivados (mananos) son la estimulación de las disacaridasas de las microvellosidades, el efecto antiadhesivo frente a patógenos, la estimulación de la inmunidad no específica, la inhibición de la acción tóxica y el efecto antagonista frente a microorganismos patógenos. Por otra parte, las enzimas, minerales, vitaminas y otros nutrientes o factores de crecimiento que producen las levaduras inducen respuestas benéficas en la producción animal. Por todo esto los probióticos, prebióticos y sim­bióticos ofrecen la posibilidad de mantener el crecimiento de animales alimentados con dietas sin antibióticos y bajo condiciones de estrés. Esta revisión versa sobre los mecanismos mediante los cuales las levaduras y sus biomoléculas derivadas afectan de manera positiva los componentes celulares, tejidos y sistemas de los animales, lo cual tiene influencia sobre los niveles de producción y la salud del huésped.

 

 

Marilce Castro, Corporación Colombiana de Investigación Agropecuaria (Agrosavia)

Investigadora, Programa Nacional de Fisiología y Nutrición Animal, Laboratorio de Microbiología Molecular, C.I. Tibaitatá.

Fernando Rodríguez, Corporación Colombiana de Investigación Agropecuaria (Agrosavia)

Investigador PhD, Programa Nacional de Fisiología y Nutrición Animal, Laboratorio de Microbiología Molecular, C.I. Tibaitatá.
Castro, M., & Rodríguez, F. (2005). Levaduras: probióticos y prebióticos que mejoran la producción animal. Ciencia Y Tecnología Agropecuaria, 6(1), 26–38. https://doi.org/10.21930/rcta.vol6_num1_art:33

Aarestrup, F.M., Bager, F., Jensen, N.E., Madsen, M., Meyling, A. y Wegener, H.C. 1998. Resistance to antimicrobial agents used for animal therapy in pathogenic, zoonotic and indicator bacteria isolated from different food animals in Denmark: a baseline study for the Danish Integrated Antimicrobial Resistance Monitoring Programme (DANMAP). APMIS. 106(8): 745-770. https://doi.org/10.1111/j.1699-0463.1998.tb00222.x

Adeola, O., Lawrence, B.V., Sutton, A.L. y Cline. T.R. 1995. Phytase-induced changes in mineral utilization in zinc-supplemented diets for pigs. J. Anim. Sci. 73: 3384−3391. https://doi.org/10.2527/1995.73113384x

Albrecht, H., y Schutte, A. 1999. Homeopathy versus antibiotics in metaphylaxis of infectious diseases: a clinical study in pig fattening and its significance to consumers. Altern Therap Health Med. 5(5): 64-68.

Ammann, A.J. y Stiehm, E.R. 1966. Immune globulin levels in colostrum and breast milk, and serum from formula- and breast-fed newborns. Proc. Soc. Exp. Biol. Med. 122: 1098-1102. https://doi.org/10.3181/00379727-122-31335

Anadon, A. y Martínez-Larrañaga, M.R. 1999. Residues of antimicrobial drugs and feed additives in animal products: regulatory aspects. Livestock Production Science 59: 183-198. https://doi.org/10.1016/S0301-6226(99)00026-3

Anderson, R.A. 1987. Chromium. In: W. Mertz (Ed.) Trace Elements in Human and Animal Nutrition. Academic Press, New York. Vol. 1. pp: 225-244. https://doi.org/10.1016/B978-0-08-092468-7.50011-9

Anderson, R.A., Bryden, N.A., Polansky, M.M. y Gautschi, K. 1996. Dietary chromium effects on tissue chromium concentrations and chromium absorption in rats, J. Trace Elem. Exptl. Med, 9: 11-25. https://doi.org/10.1002/(SICI)1520-670X(199607)9:1<11::AID-JTRA2>3.0.CO;2-K

Anderson, D.B., Mccracken, V.J., Aminov, R.I., Simpson, J.M., Mackie, R.I., Verstegen, M.W.A. y Gaskins, H.R. 1999. Gut microbiology and growth-promoting antibiotics in swine. Pig News Info. 20: 115N-122N.

Auclair, E. 2000. Yeast as an example of the mode of action of probiotic in monogastric and ruminant species. Improving Safety: from Feed to Food. Feed manufacturing in the Mediterranean region. Brufau J editors. Zaragoza. Spain., pp: 45-53.

Backstrom, L. 1973. Environment and health in piglet production. A field study of incidences and correlations. Acta Vet. Scand. Suppl., 41: 1-240.

Backstrom, L. 1999. Sweden's ban on antimicrobial feed additives misunderstood. Feedstuffs. (November 22): 8-20.

Bedford, M.R. y Schulze, H. 1998. Exogenous enzymes for pigs and poultry. Nutr Res Rev. 11(1): 91-114. https://doi.org/10.1079/NRR19980007

Behne, D., Kyriakopoulos, A., Meinhold, H. y Kohrle, J. 1990. Identification of type I iodothyronine 5'-deiodinase as a selenoenzyme. Biophys. Res. Comm. 173: 1143-1149. https://doi.org/10.1016/S0006-291X(05)80905-2

Bekaert, H., Moermans, R. y Eeckhout, W. 1996. Influence d'une culture de levure vivante (Levucell SB2) dans un aliment pour porcelets sevrés sur les performances zootechniques et sur la fréquence des diarrhées. Annales de Zootechnie. 45: 369-376. https://doi.org/10.1051/animres:19960409

Blecha, F. y Charley, B. 1990. Rationale for using immunopotentiators in domestic food animals. In: F. Blecha and B. Charley (Ed.) Immunomodulation in Domestic Food Animals. Academic Press, San Diego, CA., pp 3-19. https://doi.org/10.1016/B978-0-12-039235-3.50007-1

Boddy, A.V., Elmer, G.W., Mc Farland, L.V. y Levy, R.H. 1991. Influence of antibiotics on the recovery and kinetics of Saccharomyces boulardii in rats. Pharm. Res., 8(6): 796-800. https://doi.org/10.1023/A:1015822605815

Brugier, G. y Patte, F. 1975. Antagonisme in vitro entre l'ultra levure et différents germes bactériens. Médecin de Paris, 45: 61-66.

Buts, J.P., Bernasconi, P., Valrman, J.P. y Dive, C. 1990. Stimulation of secretory IgA and secretory component of immunoglobulins in small intestine of rats treated with Saccharomyces boulardi. Dig. Dis. Sci., 35: 251-256. https://doi.org/10.1007/BF01536771

Buts, J.P., Bernasconi, P., Van Craynest, M.P., Maldague, P. y Meyer, R. 1986. Response of human and rats small intestinal mucosa to oral administration of Saccharomyces boulardii. Pediatr. Res., 20(2): 192-196. https://doi.org/10.1203/00006450-198602000-00020

Buts, J.P., Keyser, N., y Reademaeker, L. 1994. Saccharomyces boulardii enhances rat intestinal enzyme expression by endoluminal release of polyamines. Pediatr. Res., 36: 522-527. https://doi.org/10.1203/00006450-199410000-00019

Caduff, L. 2002. Growth Hormones and Beyond. Eidgenössische Technische Hochschule Zürich (ETH Zentrum), Swiss Federal Institute of Technology Zurich. Center for International Studies (CIS). Working Paper 8-2002., pp: 1-35.

Campbell, R.G. 1998. Chromium and its role in pig production. In: Biotechnology in the Feed Industry. (T. P. Lyons and K. A Jacques, eds.). Nottingham University Press. Nottingham, UK., pp: 229-237.

Castagliulo, I., Lacant, T.,Nikulassan,S.T. y Pothoulakis, C. 1996. Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum. Infect. Immun., 64(2): 5225-5232. https://doi.org/10.1128/IAI.64.12.5225-5232.1996

Cerchiari, E. 2000. Active matrix technology making more of acids. Pig Progr. 16(4): 34-35.

Close, W.H. 1999. Organic minerals for pigs: an update. In: Biotechnology in the Feed Industry. Nottingham University Press, Nottingham., pp: 51-60.

Close, W.H. 2000. Producing Pigs without Antibiotic Growth Promoters. Advances in Pork Production. Volume 11, pp: 47-56.

Cole, N.A., Purdy, C.W. y Hutcheson, D.P. 1992. Influence of yeast culture on feeder calves and lambs. J. Anim. Sci. 70:1682-1690. https://doi.org/10.2527/1992.7061682x

Collins, M.D. y Gibson, G.R. 1999. Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am. J. Clin. Nutr. 69 (suppl): 1052S-1057S. https://doi.org/10.1093/ajcn/69.5.1052s

Commission of the European Communities. (1991). The rules governing medicinal products in the European Community, vol. VI. ECSC-EEC-EAEC, Brussels-Luxembourg.

Committee on Drug Use in Food Animals. 1999. Panel on Animal Health, Food Safety, and Public Health.. The Use of Drugs in Food Animals: Benefits and Risks. National Research Council (ed.). National Academy Press, Washington, USA.

Corthier, G., Dubos, F. y Ducluzeau, R. 1986. Prevention of Clostridium difficile mortality in gnotobiotic mice by Saccharomyces boulardii. Can. J. Microbiol., 32: 894-896. https://doi.org/10.1139/m86-164

Cromwell, G. 2000. Why and How Antibiotics are used in Swine Production. In Proceedings of the Pork Industry Conference. Addressing Issues of Antibiotic Use in Livestock Production. October 16-17. Department of Animal Science. University of Illinois. Urbana. Illinois.

Cromwell, G.L., Coffey, R.D., Parker, G.R., Monegue, H.J. y Randolph, J.H. 1995. Efficacy of a recombinant-derived phytase in improving the bioavailability of phosphorus in corn-soybean meal diets for pigs. J. Anim. Sci. 73: 2000−2008. https://doi.org/10.2527/1995.7372000x

Cuarón, P. 1999. Live yeast use in growing and finishing swine. Development of a study model. In: Proc. 3rd SAF-AGRI Symposium on Biotechnology Applied to Animal Nutrition, Merida, Mexico.

Cuarón, I.J.A., Martínez, A.A.M.M., Zapata, L., Pradal, R.P., Velázquez, M.O. y Sierra, J. 1998. Uso de levadura en la producción de cerdos. Segundo seminario Microbiología aplicada a la Nutrición Animal. México, D.F.

Czop, J.K. 1986. Characterization of a phagocytic receptor for Beta-glucan on macrophages cultured from murine bone marrow. Path. Immunopath. Res. 5: 286-296. https://doi.org/10.1159/000157022

Chang, M.H., Cheng, T.C. 2003. Reduction of Broiler House Malodor by Direct Feeding of a Lactobacilli Containing Probiotic International Journal of Poultry Science 2 (5): 313-317. https://doi.org/10.3923/ijps.2003.313.317

Chen, D. y Ainsworth, A.J. 1992. Glucan administration potentiates immune defense mechanisms of channel catfish, Ictalurus punctatus Rafinesque. J. Fish Dis. 15: 295-304. https://doi.org/10.1111/j.1365-2761.1992.tb00667.x

Davis, M.E., Maxwell, C.V., Kegley, E.B., De Rodas, B.Z., Friesen, K.G., Hellwig, D.H. y Dvorak, R. A. 1999. Efficacy of mannan oligosaccharide (Bio-Mos) addition at two levels of supplemental copper on performance and immunocompetence of early weaned pigs. J. Anim. Sci. 77 (Suppl. 1): 63 (Abs.).

Davis, M. E., Brown, D.C., Maxwell, C.V., Johnson, Z.B. y Dvorak, R.A. 2001. Efficacy of mannan oligosaccharide (Bio- Mos) as a complete or partial replacement for zinc oxide in the diets of weanling pigs. J. Anim. Sci. 79 (Suppl. 2): 78

Davis, M.E., Maxwell, C.V., Brown, D.C., De Rodas, B.Z., Johnson, Z.B., Kegley, E.B., Hellwig, D.H. y Dvorak, R.A. 2002. Effect of dietary mannan oligosaccharides and (or) pharmacological additions of copper sulfate on growth performance and immunocompetence of weanling and growing/finishing pigs. J. Anim. Sci. 80: 2887-2894. https://doi.org/10.2527/2002.80112887x

Davis, M.E., Maxwell, C.V., Erf, G.F., Brown, D.C. y Wistuba, T.J. 2004. Dietary supplementation with phosphorylated mannans improves growth response and modulates immune function of weanling pigs. J. Anim. Sci. 2004. 82: 1882-1891. https://doi.org/10.2527/2004.8261882x

Dawson, K.A. 1994. Manipulation of microorganisms in the digestive tract: The role of oligosaccharides and diet specific yeast cultures. California Nutrition Conference for feed Manufacturers.

Di Luzio, N.R. 1977. Küpfer cells and other liver sinusoidal cells, Wise, E. and Knoch, D.L. (eds). Elsevier/North-Holland Biomedical Press, Amsterdam., pp: 397.

Doyle, M,E. 2001. Alternatives to Antibiotic Use for Growth Promotion in Animal Husbandry. Food Research Institute. Food Research Institute, FRI Briefings. University of Wisconsin. Madison, Wisconsin. April., pp: 1-17.

Ducluzeau, R. y Bensaada, M. 1982. Effets comparés de l'administration unique ou en continu de Saccharomyces boulardii sur l'établis¬sement de diverses souches de Candida dans le tractus digestif de souris gnotoxeniques. Ann Microbiol., 133B : 491-501.

Durand-Chaucheyras, F., Fonty, G., Bertin, G., Theveniot, M. y Gouet, P. 1998. Fate of Levucell S C I-1077 yeast additive during digestive transit in lambs. Reprod. Nutr. Dev., 38: 275-280. https://doi.org/10.1051/rnd:19980307

Dvorak, R. y Jacques, K.A. 1998. Mannanoligosaccharide, fructooligosaccharide and Carbadox for pigs days 0-21 post-wea¬ning. J. Anim. Sci. 76 (Suppl. 2): 64 (Abs.).

El Hennawy, A.A., Tse Wong, C. y Kocoshis, S.A. 1994. Failure of Saccharomyces boulardii to hydrolyse bile acid in vitro. Microbios, 80: 23-29.

Elliot, D.A., Katcher, V.B. y Lowy, F.D. 1991. A 220-kilodalton Glycoprotein in yeast extract inhibits Staphylococcus aureus adherence to human endothelial cells. Infect. Immun., 59(6): 2222-2223. https://doi.org/10.1128/IAI.59.6.2222-2223.1991

FEDESA. 1999. Antibiotics for Animals. A F.

Fiems, L.O., Cottyn, B.G., Dussert, L. y Vanacker, J.M. 1993. Effect of a viable yeast culture on digestibility and rumen fermentation in sheep fed different types of diets. Reprod. Nutr. Dev., 33: 43-49. https://doi.org/10.1051/rnd:19930104

Fooks, L.J., Fuller, R. y Gibson, G.R. 1999. Prebiotics, probiotics and human gut microbiology. International Dairy Journal. 9: 53-61. https://doi.org/10.1016/S0958-6946(99)00044-8

Fuller, R. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 66: 365-378. https://doi.org/10.1111/j.1365-2672.1989.tb05105.x

Geary, T.M., Brooks, P.H., Beal, J.D. y Campbell, A. 1999. Effect on weaner pig performance and diet microbiology of feeding a liquid diet acidified to pH 4 with either lactic acid or through fermentation with Pediococcus acidilactici. J Sci Food Agric. 79(4): 633-640. https://doi.org/10.1002/(SICI)1097-0010(19990315)79:4<633::AID-JSFA231>3.0.CO;2-L

Gedek, B. 1989. Interaktion zwischen lebeden Hefezellen und darmpathogen Escherichia-colikeimen. In: Okosystem Darm, Morphologie, Mikrobiologie, Immunologie, Müller, J., Ottenjann, R. and Seifert, J. (eds). Springer Verlag, pp: 135-139. https://doi.org/10.1007/978-3-642-75075-5_26

Gibson, G.R. 1998. Dietary modulation of the human gut microflora using prebiotics. British Journal of Nutrition 80 (Suppl.): S209-S212. https://doi.org/10.1017/S0007114500006048

Gibson, G.R. y Roberfroid, M.B. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebi¬otics. J. Nutr. 125: 1401-1412. https://doi.org/10.1093/jn/125.6.1401

Glade, M. J. y L. M. Biesik. 1986. Enhanced N retention in yearling horses supplemented with yeast culture. J. Anim. Sci. 62: 1635-1640. https://doi.org/10.2527/jas1986.6261635x

Grela, E.R., Krusinska, R. y Matras, J. 1998. Efficacy of diets with antibiotic and herb mixture additives in feeding of growing-finishing pigs. J. Animal Feed Sci. 7(Suppl. 1): 171-175. https://doi.org/10.22358/jafs/69965/1998

Guan, X., Matte, J.J., Ku, P.K., Snow, J.L., Burton,J.L. y Trottier,N.L. 2000. High Chromium Yeast Supplementation Improves Glucose Tolerance in Pigs by Decreasing Hepatic Extraction of Insulin. J. Nutr. 130: 1274-1279. https://doi.org/10.1093/jn/130.5.1274

Han, Y.M., Yang, F., Zhou, A.G., Miller, E.R., Ku, P.K., Hogberg, M.G. y Lei, X.G. 1997. Supplemental phytases of microbial and cereal sources improve dietary phytate phosphorus utilization by pigs from weaning through finishing. J. Anim. Sci. 75: 1017−1025. https://doi.org/10.2527/1997.7541017x

Havenaar, R. y Huis In't Veld, M.J.H. 1992. Probiotics: a general view. In: The Lactic acid bacteria, Vol 1. The Lactic acid bacteria in health and disease. Ed: Brian J.B. wood. Department of Bioscience and technology, University of Strathclyde, Glasgow, U.K., pp: 155-156. https://doi.org/10.1007/978-1-4615-3522-5_6

Hayes, D.J., Jensen, H.H. y Fabiosa. J. (002. "Technology Choice and the Economic Effects of a Ban on the Use of Over-the-Counter Antibiotics in Swine Rations." J. of Food Control 13 (2, March): 97-101. https://doi.org/10.1016/S0956-7135(01)00078-0

Hillman, K. 2001. Bacteriological aspects of the use of antibiotics and their alternatives in the feed of non-ruminant animals. In: Recent Advances in Animal Nutrition. P.C. Garnsworthy and J. Wiseman (ed.). Nottingham University Press, Nottingham, UK. pp: 107-134.

Hromádkova, Z., Ebringerová, A., Sasinková, V., Sandula, J., Hríbalová, V. y Omelková J. 2003. Influence of the drying method on the physical properties and immunomodulatory activity of the particulate (1-3)-β-D-glucan from Saccharomyces cerevisiae. Carbohydrate Polymers. 51: 9-15. https://doi.org/10.1016/S0144-8617(02)00110-8

Igbasan, F.A., Manner, K., Miksch, G., Borriss, R., Farouk, A. y Simon, O. 2000. Comparative studies on the in vitro properties of phytases from various microbial origins. Arch Anim Nutr. 53(4): 353-373. https://doi.org/10.1080/17450390009381958

Jeney, G. y Anderson, D.P. 1993. Glucan injection or bath exposure given alone or in combination with a bacterin enhance the non-specific defense mechanisms in rainbow trout ( Oncorhynchus mykiss) . Aquaculture 116: 315-329. https://doi.org/10.1016/0044-8486(93)90416-V

Jonsson, E. y Conway, P.L. 1992. Probiotics for pigs. In R. Fuller (ed.), Probiotics. Chapman and Hall, London, United Kingdom., pp: 260-316. https://doi.org/10.1007/978-94-011-2364-8_11

Jørgensen, J.B., Sharp, G.J.E., Secombes, C.J. y Robertsen, B. 1993. Effect of a yeast-cell-wall glucan on the bactericidal activity of rainbow trout macrophages. Fish & Shellfish Immunol. 3: 267-277. https://doi.org/10.1006/fsim.1993.1026

Jurgens, M.H., Rikabi, R.A. y Zimmerman, D.R. 1997. The effect of dietary active dry yeast supplement on performance of sows during gestation-lactation and their pigs. Journal of Animal Science. 75: 593-597. https://doi.org/10.2527/1997.753593x

Kelly, M.P. y Power, R.F. 1995. Fractionation and identification of the major selenium containing compounds in selenized yeast. J. Dairy Sci. 78(Suppl. 1): 237 (Abstr.).

Kemme, P.A., Jongbloed, A.W., Mroz, Z., Kogut, J. y Beynen, A.C. 1999. Digestibility of nutrients in growing-finishing pigs is affected by Aspergillus niger phytase, phytate and lactic acid levels 1. Apparent ileal digestibility of amino acids. Livestock Prod Sci. 58(2): 107-117. https://doi.org/10.1016/S0301-6226(98)00203-6

Kim, J.D., Hyun, Y., Sohn, K.S., Kim, T.J., Woo, H.J. y Han, I.K. 2000. Effects of mannanoligosaccharide and protein levels on growth performance and immune status in pigs weaned at 21 days of age. Korean J. Anim. Sci. 42: 489-498. https://doi.org/10.22358/jafs/68051/2000

Klasing, K.D., Laurin, D.E, Peng, R.K. y Fry, D.M. 1987. Immunologically mediated growth depression in chicks: Influence of feed intake, corticosterone and interleukin-1. J. Nutr. 117: 1629. https://doi.org/10.1093/jn/117.9.1629

Klobasa, F. y Butler, J.E. 1987. Absolute and relative concentrations of immunoglobulins G, M, and A, and albumin in the lacteal secretions of sows of different lactation numbers. Am. J. Vet. Res. 48: 176-182.

Ko, T.G., Bae, K.H., Han, Y.K. y Han, I.K. 1998. Study on development of antibiotics-free diet for early weaned pigs. Proc. 8th World Conference on Animal Production. 1: 720-721.

Ko, T.G., Kim, J.D.,. Bae, S.H., Han, Y.K. y Han, I.K. 2000. Study for the development of antibiotics-free diet for weanling pigs. Korean J. Anim. Sci. 42: 37-44.

Korhonen, T.K. 1979. Binding specificity of piliated strains of Escherichia coli and Salmonella typhimurium to epithel cells. FEMS Microbiol. Lett., 6: 421.

Kornegay, E.T. y Qian, H. 1996. Replacement of inorganic phosphorus by microbial phytase for young pigs fed on a maize-soybeao- meal diet. Br. J. Nutr. 76: 563−578. https://doi.org/10.1079/BJN19960063

Kornegay, E. T., D. Rhein-Welker, M. D. Lindemann y C.M. Wood. 1995. Performance and nutrient digestibility in weanling pigs as influenced by yeast culture additions to starter diets containing dried whey or one of two fiber sources. J. Anim. Sci. 73: 1381-1389. https://doi.org/10.2527/1995.7351381x

Lei, X.G., Ku, P.K., Miller, E.R., Ullrey, D.E. y Yokoyama, M.T. 1993a. Supplemental microbial phytase improves bioavailability of dietary zinc to weanling pigs. J. Nutr. 123: 1117−1123.

Lei, X.G., Ku, P.K., Miller, E.R. y Yokoyama, M.T. 1993b. Supplementing corn-soybean meal diets with microbial phytase linearly improves phytate phosphorus utilization by weanling pigs. J. Anim. Sci. 71: 3359−3367. https://doi.org/10.2527/1993.71123359x

Lindemann, M.D., Wood, C.M., Harper, A.F., Kornegay, E.T. y Anderson, R.A. 1995. Dietary chromium picolinate additions improve gain:feed and carcass characteristics in growing-finishing pigs and increase litter size in reproducing sows. J. Anim. Sci. 73: 457-465. https://doi.org/10.2527/1995.732457x

Line, J.E., Bailey, J.S., Cox, N.S., Stern, N.J. y Tompkins, T. 1998. Effect of yeast supplemented feed on Salmonella and Campylobacter populations in broilers. Poultry Sci. 77: 405-410. https://doi.org/10.1093/ps/77.3.405

Liu, J., Bollinger, D.W., Ledoux, D.R., Ellersieck, M.R. y Veum, T.L. 1997. Soaking increases the efficacy of supplemental microbial phytase in a low-phosphorus corn-soybean meal diet for growing pigs. J. Anim. Sci. 75: 1292−1298. https://doi.org/10.2527/1997.7551292x

Mahan, D.C. 2000. Effect of organic and inorganic selenium sources and levels on sow colostrum and milk selenium content. J. Anim. Sci. 78: 100-105. https://doi.org/10.2527/2000.781100x

Mantecón, T. y Ahumada, A. 2000. Diarrea mecánica de porcino en lactancia y postdestete. Mundo Ganadero. Eumedia. Madrid, España. Febrero 2000. 1(119): 48-50.

Massot, J., Descauclois, J. y Astoin, J. 1982. Protection par Saccharomyces boulardii de la diarrhée à E. coli du souriceau. Ann. Pharmaceutiques Françaises, 40(5): 445-449.

May, T.V., Reinhart, E. y Von May, T. 1997. Field trial of homeopathic, prophylactic herd treatment in weaning pigs against enterotoxaemia caused by Escherichia coli. Biologische Tiermed. 14(1): 20-27.

Mc Connell, K.P. y Hoffman, J.L. 1972. Methionine-selenomethionine parallels in rat liver polypeptide chain synthesis. Fed. Proc. 31: 691 (Abstr.).

Mc Farland, L.V., Surowicz, C.M., Greenberg, R.N., Elmer, G.W., Moyer, K.A., Melcher, S.A., Bowen, K.E. y Cox, J.L. 1995. Prevention of Beta-lactam-associated diarrhea by Saccharomyces boulardii compared with placebo. Am. J. Gastroenterology, 90(3): 439-448.

Mellor, S. 2000. Herbs and spices promote health and growth. Pig Progress. 16(4): 27-30.

Mertz, W. 1993. Chromium in human nutrition: A review. J. Nutr. 123: 626-633. https://doi.org/10.1093/jn/123.4.626

Meyer, W.R., Mahan, D.C., y Moxon, A.L. 1981. Value of dietary selenium and vitamin E for weanling swine as measured by performance and tissue selenium and glutathione peroxidase activities. J. Anim. Sci. 52: 302-311. https://doi.org/10.2527/jas1981.522302x

Miller, D.J.S. 2000. Future developments and trends with respect to food animal veterinary drugs. Report of the Committee on Pharmaceuticals. United States Animal Health Association. Committee Reports., pp: 3-13.

Mitterdorfer, G., Kneifel, W., y Viernstein, H. 2001. Utilization of prebiotic carbohydrates by yeast of therapeutic relevance. Letters in Applied Microbiology. 33. pp: 251-255. https://doi.org/10.1046/j.1472-765X.2001.00991.x

Mowat, A. 1987. The regulation of immune responses to dietary protein antigens. Immunol. Today 8: 93-98. https://doi.org/10.1016/0167-5699(87)90853-X

Mowat, D.N. 1997. Organic Chromium in Animal Nutrition. Chromium Books, Guelph, ON, Canada.

Mroz, Z., Jongbloed, A.W., Partanen, K.H., Vreman, K., Kemme, P.A. y Kogut, J. 2000. The effects of calcium benzoate in diets with or without organic acids on dietary buffering capacity, apparent digestibility, retention of nutrients, and manure characteristics in swine. J. Anim. Sci. 78(10): 2622-2632. https://doi.org/10.2527/2000.78102622x

Mul , A.J., y Perry, F.G. 1994. The role of fructo-oligosaccharides in animal nutri¬tion. In P.C. Garnsworthy and J.A. Cole (ed.), Recent advances in animal nutrition. Nottingham Press, Nottingham, United Kingdom. pp: 57-79.

Newman, K.E. y Newman, M.C. 2001. Evaluation of mannan oligosaccharide on the microflora and immunoglobulin satus of sows and piglet performance. J. Anim. Sci. 79(Suppl. 1)189 (Abstr).

NRC. 1998. Nutrient Requirements of Swine. (10th ed.). National Academy Press, Washington, DC. PAGINAS

Nyberg, K., Ness, K., Johansson, A., Jarstrand, C. y Camner, P. 1996. Alveolar macrophage response to yeast and inert particles. J Med Vet Mycology. 34: 11-17. https://doi.org/10.1080/02681219680000031

O'Doherty, J.V. y Forde, S. 1999. The effect of protease and alpha-galactosidase supplementation on the nutritive value of peas for growing and finishing pigs. Ir J Agri Food Res. 1999; 38(2): 217-226.

Ofek, I., Mirelman, D. y Sharon, N. 1977. Adherence of Escherichia coli to human mucosal cells mediated by mannose receptors. Nature, UK, 265: 623-625. https://doi.org/10.1038/265623a0

O'Quinn, P.R., Funderburke, D.W. y Tibetts, G.W. 2001. Effects of dietary supplementation with mannan oligosaccharides on sow and litter performance in a commercial production system. J. Anim. Sci. 79(Suppl. 1): 212 (Abstr).

O'Quinn, P.R., Knabe, D.A., y Gregg, E.J. 1997. Efficacy of Natuphos in sorgum-based diets of finishing swine. J. Anim. Sci. 75: 1299−1307. https://doi.org/10.2527/1997.7551299x

Overland, M., Granli, T., Kjos, N.P., Fjetland, O., Steien, S.H. y Stokstad, M. 2000. Effect of dietary formates on growth performance, carcass traits, sensory quality, intestinal microflora, and stomach alterations in growing-finishing pigs. J Anim Sci.; 78(7): 1875-1884. https://doi.org/10.2527/2000.7871875x

Oyofo, B.A., Deloach, J.R., Corrier, D.E., Norman, J.O., Ziprin, R.L. y Mollenhauer, H.H. 1989. Prevention of Salmonella typhimurium colonization with D-mannose. Poultry Sci., 68: 1357-1360. https://doi.org/10.3382/ps.0681357

Partanen, K.H. y Mroz, Z. 1999. Organic acids for performance enhancement in pig diets. Nutrition Research Reviews 12: 117-145. https://doi.org/10.1079/095442299108728884

Partridge, G .R. 1993. In feed enzymes and antibodies. Pig Vet J. 31: 34-50.

Paulicks, B.R., Roth, F.X., y Kirchgessner, M. 2000. Effects of potassium diformate (Formi® LHS) in combination with different grains and energy densities in the feed on growth performance of weaned piglets. J Anim Physiol Anim Nutr.; 84(3-4): 102-111. https://doi.org/10.1046/j.1439-0396.2000.00288.x

Pettigrew, J. E. 2000. Bio-Mos effects on pig performance: A review. in Proc. of Alltech's 16th Annu. Symp.: Biotechnol. in the Feed Industry. T. P. Lyons and K. A. Jacques, ed. Nottingham Univ. Press, Nottingham U.K. pp: 31-44

Pillemer, L., Blum, L., Lepow, I.H., Ross, O.A., Todd, E.W. y Warlaw, A.C. 1954. The properdin system and immunity. I. Demonstration and isolation of a new serum protein, properdin, and its role in immune phenomena. Science, 120: 279-285. https://doi.org/10.1126/science.120.3112.279

Piva, A. 1998. Non-conventional feed additives. J Anim Feed Sci.; 7(Suppl 1): 143-154. https://doi.org/10.22358/jafs/69962/1998

Poutsiaka, D.D., Mengozzi, M., Sinha, B. y Dinarello, C.A. 1993. Cross-linking of the b-glucan receptor on human monocytes results in interleukin-1 receptor antagonist but not interleukin- 1 production. Blood 82: 3695. https://doi.org/10.1182/blood.V82.12.3695.bloodjournal82123695

Rastall, B. y Gibson, G. 2004. E coli as probiotic. Microbiology Today. Vol 31, Agosto.,pp: 119.

Reddy, N.R., Sathe, S.K., y Salunkhe, D.K. 1982. Phytates in legumes and cereals. In: C. 0. Chichester (Ed.) Advances in Food Research. Academic Press, New York. Vol. 28. pp: 1-92. https://doi.org/10.1016/S0065-2628(08)60110-X

Riggi, S.J. y Di Luzio, N.R. 1961. Identification of a RE stimulating agent in zymosan. Am. J. Physiol., 200: 297-300. https://doi.org/10.1152/ajplegacy.1961.200.2.297

Rigothier, M.C., Maeconis, J. y Gapral, P. 1994. Effets des levures Saccharomyces boulardii sur les trophozoites d'entamoeba histolytica in vitro et dans l'amibiase caecale du jeune rat. Parasitol. Res., 80: 10-15.

Robertsen, B., Rørstad, G., Engstad, R. y Raa, J. 1990. Enhancement of non-specific disease resistance in Atlantic salmon. Salmo salar L., by a glucan from Saccharomyces cerevisiae cell walls. J. Fish Dis. 13: 391-400. https://doi.org/10.1111/j.1365-2761.1990.tb00798.x

Rodríguez, A.C.P., Nerdi, R.M., Bambirra, E.A., Vieira, E.C. y Nicoli, J.R. 1996. Effect of Saccharomyces boulardii against experimental oral infection with Salmonella typhimurium and Shigella flexneri in conventional and gnotobiotic mice. J. Appl. Bacteriol. 81: 251-256. https://doi.org/10.1111/j.1365-2672.1996.tb04325.x

Roques, C., Dussert, L., Toumut, J., Poomvises, P. y Ingkaninum, P. 1994. Saccharomyces cerevisiae Sc47 as a growth promoter for the swine: importance of dosage in the feed for optimal efficiency proceedings. The 13th International Pig Veterinary Society Congress. Baogkok, Thailand. June 26-30., pp: 296-302.

Rosen, G.D. 1995. Antibacterials io poultry and pig nutrition. In: Biotechnology in Animal Feeds and Animal Nutrition. J. Wallace and A. Chesson (ed.). VCH Verlagsgesellschaft mbH, Weinheim, Germany. pp: 143-172. https://doi.org/10.1002/9783527615353.ch8

Roth, F.X y Kirchgessner, M. 1993. Influence of avilamycin and tylosin on retention and excretion of nitrogen in growing pigs. J Anim Physiol Anim Nutr. 1993; 69(4): 175-185. https://doi.org/10.1111/j.1439-0396.1993.tb00803.x

Rotruck, J.T., Pope, A.L., Ganther, H.E., Swansown, A.B., Hafeman, D.G. y Hoekstra, H.G. 1973. Selenium: Biochemical role as a component of glutathione peroxidase. Science 179: 588-590. https://doi.org/10.1126/science.179.4073.588

Rozeboom, D.W., Shaw, D.T., Pettigrew, J.E., y Connolly, A. 2001. Comparative effects of mannanoligosaccharide and an antibiotic in nursery diets on performance of pigs reared on three farms. J. Anim. Sci. 79 (Suppl. 2): 79.

Rubin, J.S.2004. How to restore digestive health. Wise Traditions in Food, Farming and the Healing Arts, the quarterly magazine of the Weston A. Price Foundation, Summer 2004.

Russell, T.J., Kerley, M.S., Allee, G.L. y Howard, M.D. 1998. Fructooligosaccharides improves nitrogen metabolism And reduces fecal excretion of odor metabolites In the weaned pig. Swine., pp: 79-83.

Schoenherr, W.D., Pollmann, D.S. O'Quinn y Coalson, J.A. 1994. Titration of MacroGard on growth performance of nursery pigs. J. Anim. Sci. 72(Suppl. 2): 57 (Abstr.).

Scholten, R.H.J., Van Der Peet-Schwering, C.M.C., Verstegen, M.W.A., Den Hartog, L.A., Schrama, J.W., Y Vesseur, P.C. 1999. Fermented co-products and fermented compound diets for pigs: a review. Anim Feed Sci Technol. 82(1- 2): 1-19. https://doi.org/10.1016/S0377-8401(99)00096-6

Schrezenmeir, J. y Vrese, M. 2001. Probiotics, prebiotics and synbiotics approaching a definition. Am J Clin Nutr. 73 (suppl): 361S-4S https://doi.org/10.1093/ajcn/73.2.361s

Seguela, J.P. y Llanes, J.P. 1982. Dépression des défences immuoitaires par antibiothérapie restauration expérimentale par un Saccharomyces. Bull.Soc.Mycol.Med.11: 343-347.

Seguela, J.P., Massot, J., Nesson, J. y Patte, F. 1978. Action d'un saccharomy¬ces lors d'une infestation expérimentale a Candida albicans chez le rat normal et chez le rat traité par antibiotique Bull. Soc. Mycol. Med., 7: 199-202.

Siberio, V., Bull, R., Hill, G., Rozeboom, D., Hogberg, M., Y Yokohama, H. 1996. Effects of dietary Cr supplementation on performance and the immune response of pigs reared in a crowded nursery environment. J. Anim. Sci. 74 (Suppl. 1): 53

Song, M., y Di Luzio, N.R. 1979. Yeast glucan and immunotherapy of infectious diseases. In: Lysosomes in Applied Biology and Therapeutics, Dingle, J.T., Jacques, P.J. and Shaw, I.H. (eds). North Holland Press, Amsterdam, pp: 533-547.

SOU. 1997. Antimicrobial Feed Additives. Swedish Government Official Report. Stockholm: Fritzes Bookshop.

Spring, P. y Pirvulescu, M. 1998. Mannanoligosaccharide: Its logical role as a natural feed additive for piglets. In Biotechnology in the Feed Industry, Proceedings of Alltech's 14th Annual Symposium. Editado por T. P. Lyons y K. A. Jacques. Nottingham University Press, UK., pp: 553-561

Spring, P., Wenk, C., Dawson, K.A y Newman, K.E. 2000. The effects of dietary mannanoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of Salmonella- challenged broiler chicks. Poult. Sci. 79: 205-211. https://doi.org/10.1093/ps/79.2.205

Stahl, C.H., Han, Y.M., Roneker, K.R., House, W.A., y Lei. X.G. 1999. Phytase improves iron bioavailability for hemoglobin synthesis in young pigs. J. Anim. Sci. 77: 2135−2142. https://doi.org/10.2527/1999.7782135x

Stahl, C.H., Roneker, K.R., Thornton, J.R. y Lei, X. G. 2000. A new phytase expressed in yeast effectively improves the bioavailability of phytate phosphorus to weanling pigs. J. Anim. Sci. 78: 668-674. https://doi.org/10.2527/2000.783668x

Stokes, C.R., Miller, B.G., Bailey, M., Wilson, A.D. y Bourne, F.J. 1987. The immune response to dietary antigens and its influence on disease susceptibility in farm animals. Vet. Immunol. Immunopathol. 17: 413. https://doi.org/10.1016/0165-2427(87)90158-9

Suzuki, I., Tanaka, H., Kinoshita, A., Oikawa, S., Osawa, M.,Y Yadomae, T. 1990. Effect of orally administered β-glucan on macrophage function in mice. Int. J. Immunopharmacol. 12: 675. https://doi.org/10.1016/0192-0561(90)90105-V

Thomke, S. y Elwinger, K. 1998. Growth promotants in feeding pigs and poultry. III. Alternatives to antibiotic growth promotants. Ann Zootech. (4): 245-271. https://doi.org/10.1051/animres:19980402

Tizard, I.R., Carpenter, R.H., Mcanalley, B.H. y Kemp, M.C. 1989. The biological activities of mannans and related complex carbohydrates. Mol. Biother. 1: 290.

Tronstad, A. 1997. The Swedish ban on antibiotic growth promoters in animal feeds. Pig J. 40: 89-98.

Turner, J.L., Pas, S.S., Dritz y Minton, J.E. 2002. Review: Alternatives to Antimicrobials in Swine Diets The Professional Animal Scientist 17: 217-226. https://doi.org/10.15232/S1080-7446(15)31633-8

United States Animal Health Nutrition. 2000. Report on the Committee on Pharmaceuticals., http://www.usaha.org/reports/reports00/r00pharm.html.

Van de Ligt, J.G., Lindemann, M.D., Harmon, R.J., Monegue, H.G. y Cromwell, G.L. 2002. Effect of chromium tripicolinate supplementation on porcine immune response during the postweaning period. J. Anim. Sci. 80: 449-455. https://doi.org/10.2527/2002.802449x

Van Heugten, E., Funderburke, D. W. y Dorton, K.L. 2003. Growth performance, nutrient digestibility, and fecal microflora in weanling pigs fed live yeast. J. Anim. Sci. 81: 1004-1012. https://doi.org/10.2527/2003.8141004x

Van Heugten, E. y Spears, J.W. 1997. Immune Response and Growth of Stressed Weanling Pigs Fed Diets Supplemented with Organic or Inorganic Forms of Chromium. J. Anim Sci. 1997. 75: 409-416 https://doi.org/10.2527/1997.752409x

Vidon, N., Huchet, B. y Rambaud, J.G. 1986. Influence de Saccharomyces boulardi sur la sécrétion jejnale induite chez le rat par la toxine cholerique. Gastroenterol. Clin. Biol., 10: 13-16.

Wheeler, G.E. y Wilson, D. 1996. Supplementation of herbal 'Nebsui' in feed for improved pig production. Ind J Indigen Med. 18(2): 95-100.

White, L.A., Newman, M.C., Cromwell, G.L. y Lindemann, M.D. 2001. Efficacy of brewers dried yeast as a source of mannanoligosaccharides, without and with organic acids, and of carbadox on performance and intestinal bacterial populations of weanling pigs. J. Anim. Sci. 79 (Suppl. 2): 78.

Wiedmeier, R.D., M.J. Arambel y J.L. Walters. 1987. Effect of yeast culture and Aspergillus oryzee fermentation extract on ruminal characteristics and nutrient digestibility. J. Dairy Sci. 70: 2063-2068. https://doi.org/10.3168/jds.S0022-0302(87)80254-0

Williams, D.L., Yaeger, R.G., Pretus, H.A., Browder, I.W., Mcnamee, R.B. y Jones, E.L. 1989. Immunization against Trypanosoma cruzi: adjuvant effect of glucan. Int. J. Immunopharmacol. 11: 403. https://doi.org/10.1016/0192-0561(89)90087-8

Witte, W. 1998. Medical consequences of antibiotic use in agriculture. Science. 279 (5353): 996-997. https://doi.org/10.1126/science.279.5353.996

Witte, W., Jorsal, S.E., Roth, F.X., Kirchgessner, M., Göransson, L., Lange, S. y Pedersen, K.B. 2000. Future strategies with regard to the use of feed without antibiotic additives in pig production. Scientific Report, Pig News and Information. 21(1): 27N-32N.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

3022 | 844




 

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.