Resumen
El aprovechamiento de los subproductos de cultivos se ha convertido en una línea de investigación clave en el contexto actual de economía circular y bioeconomía. En Colombia, los residuos de cosecha y poscosecha, así como los excedentes de cultivos, han sido subutilizados como fuente potencial de compuestos bioactivos. El objetivo de esta investigación fue analizar las tendencias y tecnologías utilizadas para el aprovechamiento de los subproductos del cultivo de brócoli (Brassica oleracea var. italica). Se identificaron las líneas de investigación actuales en poscosecha y procesamiento, así como tecnologías en temas como senescencia, empaque y transporte, vida útil, calidad, proceso de secado y subproductos. Se destaca la escasez de resultados de investigación sobre los subproductos del brócoli y su uso o potencial aprovechamiento, lo que demuestra la oportunidad de fortalecer la investigación en este tema. Por último, se establecen retos y trabajos futuros para la investigación del aprovechamiento de los subproductos del brócoli mediante el uso de sus compuestos bioactivos en productos de valor agregado.
Abellán, Á., Domínguez-Perles, R., Giménez, M. J., Zapata, P. J., Valero, D., & García-Viguera, C. (2021). The development of a broccoli supplemented beer allows obtaining a valuable dietary source of sulforaphane. Food Bioscience, 39. https://doi.org/10.1016/j.fbio.2020.100814
Aguilar-Camacho, M., Welti-Chanes, J., & Jacobo-Velázquez, D. A. (2019). Combined effect of ultrasound treatment and exogenous phytohormones on the accumulation of bioactive compounds in broccoli florets. Ultrasonics Sonochemistry, 50, 289-301. https://doi.org/10.1016/j.ultsonch.2018.09.031
Ahlawat, Y., & Liu, T. (2021). Varied expression of senescence-associated and ethylene-related genes during postharvest storage of brassica vegetables. International Journal of Molecular Sciences, 22(2), 839. https://doi.org/10.3390/ijms22020839
Aiamla-or, S., Shigyo, M., & Yamauchi, N. (2019). UV-B treatment controls chlorophyll degradation and related gene expression in broccoli (Brassica oleracea L. Italica Group) florets during storage. Scientia Horticulturae, 243, 524-527. https://doi.org/10.1016/j.scienta.2018.09.009
Alvarez-Jubete, L., Valverde, J., Kehoe, K., Reilly, K., Rai, D. K., & Barry-Ryan, C. (2014). Development of a Novel Functional Soup Rich in Bioactive Sulforaphane Using Broccoli (Brassica oleracea L. ssp. italica) Florets and Byproducts. Food and Bioprocess Technology, 7(5), 1310-1321. https://doi.org/10.1007/s11947-013-1113-9
Ansorena, M. R., Marcovich, N. E., & Roura, S. I. (2011). Impact of edible coatings and mild heat shocks on quality of minimally processed broccoli (Brassica oleracea L.) during refrigerated storage. Postharvest Biology and Technology, 59(1), 53-63. https://doi.org/10.1016/j.postharvbio.2010.08.011
Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007
Arnáiz, E., Bernal, J., Martín, M. T., García-Viguera, C., Bernal, J. L., & Toribio, L. (2011). Supercritical fluid extraction of lipids from broccoli leaves. European Journal of Lipid Science and Technology, 113(4), 479-486. https://doi.org/10.1002/ejlt.201000407
Asoda, T., Terai, H., Kato, M., & Suzuki, Y. (2009). Effects of postharvest ethanol vapor treatment on ethylene responsiveness in broccoli. Postharvest Biology and Technology, 52(2), 216-220. https://doi.org/10.1016/j.postharvbio.2008.09.015
Becker, T. M., Jeffery, E. H., & Juvik, J. A. (2017). Proposed method for estimating health-promoting glucosinolates and hydrolysis products in broccoli (Brassica oleracea var. italica) using relative transcript abundance. Journal of Agricultural and Food Chemistry, 65(2), 301-308. https://doi.org/10.1021/acs.jafc.6b04668
Ben-Fadhel, Y., Ziane, N., Salmieri, S., & Lacroix, M. (2018). Combined Post-harvest Treatments for Improving Quality and Extending Shelf-Life of Minimally Processed Broccoli Florets (Brassica oleracea var. italica). Food and Bioprocess Technology, 11(1), 84-95. https://doi.org/10.1007/s11947-017-1992-2
Bessler, H., & Djaldetti, M. (2018). Broccoli and human health: immunomodulatory effect of sulforaphane in a model of colon cancer. International Journal of Food Sciences and Nutrition, 69(8), 946-953. https://doi.org/10.1080/09637486.2018.1439901
Bisharat, G. I., Katsavou, I. D., Panagiotou, N. M., Krokida, M. K., & Maroulis, Z. B. (2015). Investigation of functional properties and color changes of corn extrudates enriched with broccoli or olive paste. Food Science and Technology International, 21(8). https://doi.org/10.1177/1082013214559310
Borowski, J., Szajdek, A., Borowska, E. J., Ciska, E., & Zieliński, H. (2008). Content of selected bioactive components and antioxidant properties of broccoli (Brassica oleracea L.). European Food Research and Technology, 226(3), 459-465. https://doi.org/10.1007/s00217-006-0557-9
Branham, S. E., & Farnham, M. W. (2017). Genotyping-by-sequencing of waxy and glossy near-isogenic broccoli lines. Euphytica, 213(4). https://doi.org/10.1007/s10681-017-1873-9
Cai, Y. X., Augustin, M. A., Jegasothy, H., Wang, J. H., & Terefe, N. S. (2020). Mild heat combined with lactic acid fermentation: A novel approach for enhancing sulforaphane yield in broccoli puree. Food and Function, 11(1). https://doi.org/10.1039/c9fo02089f
Calderón-Alvarado, M. P., Alvarado-Orozco, J. M., Herrera-Hernández, E. C., Martínez-González, G. M., Miranda-López, R., & Jiménez-Islas, H. (2016). Effect of two viscosity models on lethality estimation in sterilization of liquid canned foods. Food Science and Technology International, 22(6). https://doi.org/10.1177/1082013215627393
Caleb, O. J., Ilte, K., Fröhling, A., Geyer, M., & Mahajan, P. V. (2016). Integrated modified atmosphere and humidity package design for minimally processed Broccoli (Brassica oleracea L. var. italica). Postharvest Biology and Technology, 121, 87-100. https://doi.org/10.1016/j.postharvbio.2016.07.016
Castillejo, N., Martínez-Zamora, L., Gómez, P. A., Pennisi, G., Crepaldi, A., Fernández, J. A., Orsini, F., & Artés-Hernández, F. (2021). Postharvest LED lighting: effect of red, blue and far red on quality of minimally processed broccoli sprouts. Journal of the Science of Food and Agriculture, 101(1), 44-53. https://doi.org/10.1002/jsfa.10820
Che, C., Li, Y., Liang, X., Gong, Z., Liu, J., & Yang, G. (2019). A novel biodegradable hollow nanocarrier consisting superparamagnetic Fe3O4-loaded poly-γ-glutamic acid and chitosan oligosaccharide for targeted delivery of sulforaphane from broccoli seed extracts. Journal of Hard Tissue Biology, 28(3), 297-302. https://doi.org/10.2485/jhtb.28.297
Chen, X. (2017). Barley seedling powder solid beverage and preparation method thereof (Patent No. CN106879902A). https://bit.ly/3K1yEEe
Chi, G. (2018). Nutritional food with vegetable and fruit powder and convenient to eat (Patent No. CN107581603A). https://bit.ly/36Dw1da
Chiang, C. M., Chen, S. P., Chen, L. F. O., Chiang, M. C., Chien, H. L., & Lin, K. H. (2014). Expression of the broccoli catalase gene (BoCAT) enhances heat tolerance in transgenic Arabidopsis. Journal of Plant Biochemistry and Biotechnology, 23(3), 266-277. https://doi.org/10.1007/s13562-013-0210-1
Cobo, M. J. (2020). Identification and Visualization of the Conceptual Structure and Main Research Themes of Studies in Informatics and Control Journal from 2008 to 2019. September. https://doi.org/10.24846/v29i2y202002
Conzatti, A., Telles da Silva Froes, F. C., Schweigert Perry, I. D., & Guerini de Souza, C. (2015). Clinical and Molecular Evidence of the Consumption of Broccoli, Glucoraphanin and Sulforaphane in Humans. Nutricion Hospitalaria, 31(02), 259-569. https://www.nutricionhospitalaria.org/articles/H1243/show
Córdova, C., Vivanco, J. P., Quintero, J., & Mahn, A. (2020). Effect of drum-drying conditions on the content of bioactive compounds of broccoli pulp. Foods, 9(9). https://doi.org/10.3390/foods9091224
Cuccurullo, C., Aria, M., & Sarto, F. (2016). Foundations and trends in performance management. A twenty-five years bibliometric analysis in business and public administration domains. Scientometrics, 108, 595-611. https://doi.org/10.1007/s11192-016-1948-8
Dai, P., Yu, Y., Yu, J., Jin, W., & Yu, O. (2017). Meal replacement solid beverage contributing to reducing weight and preparation method of meal replacement solid beverage (Patent No. 07467462A).
Diaz-Monroy, B. L., Iglesias, A. E., & Valiño-Cabrera, E. C. (2014). Evaluation of bioensilage of broccoli (Brassica oleracea L.) and oats (Avena sativa L.) as supplements for dairy cows. Archivos Latinoamericanos de Producción Animal, 22(1/2), 21-29. https://ojs.alpa.uy/index.php/ojs_files/article/view/2378
Ding, T., Gobber, C., Santana, J. C. C., Alves, W. A. L., Araújo, S. A., & Dong-Hong, L. (2018). Combination of optimization techniques to find of processing optimal condition of postharvest broccoli by vacuum cooling process. Acta Scientiarum - Technology, 40. https://doi.org/10.4025/actascitechnol.v40i1.36222
Drabińska, N., Ciska, E., Szmatowicz, B., & Krupa-Kozak, U. (2018). Broccoli by-products improve the nutraceutical potential of gluten-free mini sponge cakes. Food Chemistry, 267, 170-177. https://doi.org/10.1016/j.foodchem.2017.08.119
Duarte-Sierra, A., Nadeau, F., Angers, P., Michaud, D., & Arul, J. (2019). UV-C hormesis in broccoli florets: Preservation, phyto-compounds and gene expression. Postharvest Biology and Technology, 157. https://doi.org/10.1016/j.postharvbio.2019.110965
Fahey, J. W., Wade, K. L., Stephenson, K. K., Panjwani, A. A., Liu, H., Cornblatt, G., Cornblatt, B. S., Ownby, S. L., Fuchs, E., Holtzclaw, W. D., & Cheskin, L. J. (2019). Bioavailability of sulforaphane following ingestion of glucoraphanin-rich broccoli sprout and seed extracts with active myrosinase: A pilot study of the effects of proton pump inhibitor administration. Nutrients, 11(7). https://doi.org/10.3390/nu11071489
FAO. (2012). Pérdidas y desperdicio de alimentos en el mundo – Alcance, causas y prevención. https://www.fao.org/sustainable-food-value-chains/library/detalles/es/c/278445/
FAO. (2019). El estado mundial de la agricultura y la alimentación. Progresos en la lucha contra la pérdida y el desperdicio de alimentos. https://www.fao.org/agrifood-economics/publications/detail/es/c/1476297/
FAO. (2021). El estado mundial de la agricultura y la alimentación 2021. https://doi.org/10.4060/cb4476es
Flórez-Martínez, D.-H., & Uribe-Galvis, C. P. (2020). Fourth Industrial Revolution Technologies for Agriculture Sector: A Trend Analysis in Agriculture 4.0. In Proceedings of the 18th LACCEI International Multi-Conference for Engineering, Education, and Technology: "Engineering, Integration, and Alliances for a Sustainable Development" (pp. 1-12). http://dx.doi.org/10.18687/LACCEI2020.1.1.11
Gao, J., Si, Y., Zhu, Y., Luo, F., & Yan, S. (2018). Temperature abuse timing affects the rate of quality deterioration of postharvest broccoli during different pre-storage stages. Scientia Horticulturae, 227, 207-212. https://doi.org/10.1016/j.scienta.2017.09.034
García-Saldaña, J. S., Campas-Baypoli, O. N., Sánchez-Machado, D. I., & López-Cervantes, J. (2018). Separation and purification of sulforaphane (1-isothiocyanato-4-(methylsulfinyl) butane) from broccoli seeds by consecutive steps of adsorption-desorption-bleaching. Journal of Food Engineering, 237, 162-170. https://doi.org/10.1016/j.jfoodeng.2018.06.002
Gaskin, J. W., Cabrera, M. L., Kissel, D. E., & Hitchcock, R. (2020). Using the cover crop N calculator for adaptive nitrogen fertilizer management: A proof of concept. Renewable Agriculture and Food Systems, 35(5). https://doi.org/10.1017/S1742170519000152
Georgikou, C., Buglioni, L., Bremerich, M., Roubicek, N., Yin, L., Gross, W., Sticht, C., Bolm, C., & Herr, I. (2020). Novel broccoli sulforaphane-based analogues inhibit the progression of pancreatic cancer without side effects. Biomolecules, 10(5). https://doi.org/10.3390/biom10050769
Gómez-Lobato, M. E., Mansilla, S. A., Civello, P. M., & Martínez, G. A. (2014). Expression of Stay-Green encoding gene (BoSGR) during postharvest senescence of broccoli. Postharvest Biology and Technology, 95, 88-94. https://doi.org/10.1016/j.postharvbio.2014.04.010
González, F., Quintero, J., Del Río, R., & Mahn, A. (2021). Optimization of an extraction process to obtain a food-grade sulforaphane-rich extract from broccoli (Brassica oleracea var. italica). Molecules, 26(13). https://doi.org/10.3390/molecules26134042
Guo, R., Hou, Q., Yuan, G., Zhao, Y., & Wang, Q. (2014). Effect of 2, 4-epibrassinolide on main health-promoting compounds in broccoli sprouts. LWT, 58(1), 287-292. https://doi.org/10.1016/j.lwt.2014.02.047
Guo, Y., Gao, Z., Li, L., Wang, Y., Zhao, H., Hu, M., Li, M., & Zhang, Z. (2013). Effect of controlled atmospheres with varying O2/CO2 levels on the postharvest senescence and quality of broccoli (Brassica oleracea L. var. italica) florets. European Food Research and Technology, 237(6), 943-950. https://doi.org/10.1007/s00217-013-2064-0
Guo, Y., Wang, L., Chen, Y., Yun, L., Liu, S., & Li, Y. (2018). Stalk length affects the mineral distribution and floret quality of broccoli (Brassica oleracea L. var. italica) heads during storage. Postharvest Biology and Technology, 145, 166-171. https://doi.org/10.1016/j.postharvbio.2018.07.003
Hasperué, J. H., Guardianelli, L., Rodoni, L. M., Chaves, A. R., & Martínez, G. A. (2016). Continuous white-blue LED light exposition delays postharvest senescence of broccoli. LWT, 65, 495-502. https://doi.org/10.1016/j.lwt.2015.08.041
Henao-Rojas, J., Alzate, L., Vargas, M., Garcia-Alzate, L., Quintero, L., & Franco, G. (2020). EVALUACIÓN DE LAS CARACTERÍSTICAS DE LOS EXCEDENTES PRODUCTIVOS DE BRÓCOLI Y LECHUGA Y SU POTENCIAL APROVECHAMIENTO. Memorias Del Encuentro Lasallista de Investigación, 126-145.
Hu, C. H., Zuo, A. Y., Wang, D. G., Pan, H. Y., Zheng, W. B., Qian, Z. C., & Zou, X. T. (2011). Effects of broccoli stems and leaves meal on production performance and egg quality of laying hens. Animal Feed Science and Technology, 170(1–2), 117-121. https://doi.org/10.1016/j.anifeedsci.2011.07.019
Huang, J., & Pan, F. (2018). High-selenium broccoli pressed candy and preparation method thereof. https://bit.ly/36DwNH6
Iribe-Salazar, R., Caro-Corrales, J., Hernández-Calderón, Ó., Zazueta-Niebla, J., Gutiérrez-Dorado, R., Carrazco-Escalante, M., & Vázquez-López, Y. (2015). Heat transfer during blanching and hydrocooling of broccoli florets. Journal of Food Science, 80(12), E2774-E2781. https://doi.org/10.1111/1750-3841.13109
Javaid, A., Shahzad, G. I. R., Akhtar, N., & Ahmed, D. (2018). Alternaria leaf spot disease of Broccoli in Pakistan and management of the pathogen by leaf extract of Syzygium cumini. Pakistan Journal of Botany, 50(4). https://www.pakbs.org/pjbot/paper_details.php?id=7676
Jin, X., van der Sman, R. G. M., & van Boxtel, A. J. B. (2011). Evaluation of the free volume theory to predict moisture transport and quality changes during broccoli drying. Drying Technology, 29(16), 1963-1971. https://doi.org/10.1080/07373937.2011.596298
Kaneko, K., Otoguro, C., Kikuchi, S., Odake, S., Sumino, T., Tsuji, K., & Saito, K. (1999). Changes in Various Ingredients, Escherichia coli, Taste and Texture of Blade Vegetables as a Result of Low Temperature Steam-Heating Process. Food Science and Technology Research, 5(2), 145-152. https://doi.org/10.3136/fstr.5.145
Kang, Y., Jin, X., Wu, W., & Yang, W. (2019). Fruit-vegetable solid beverage for eliminating toxins and beautifying skins with high dietary fiber content and preparation method thereof. https://bit.ly/3Mbyg83
Kapusta-Duch, J., Leszczyńska, T., Borczak, B., Florkiewicz, A., & Ambroszczyk, A. (2019). Impact of Different Packaging Systems on Selected Antioxidant Properties of Frozen-Stored Broccoli. Ecological Chemistry and Engineering S, 26(2). https://doi.org/10.1515/eces-2019-0027
Kato, M., Kamo, T., Wang, R., Nishikawa, F., Hyodo, H., Ikoma, Y., Sugiura, M., & Yano, M. (2002). Wound-induced ethylene synthesis in stem tissue of harvested broccoli and its effect on senescence and ethylene synthesis in broccoli florets. Postharvest Biology and Technology, 24(1), 69-78. https://doi.org/10.1016/S0925-5214(01)00111-9
Kaur, C., & Kapoor, H. C. (2002). Anti-oxidant activity and total phenolic content of some Asian vegetables. International Journal of Food Science and Technology, 37(2), 153-161. https://doi.org/10.1046/j.1365-2621.2002.00552.x
Kensler, T. W., Ng, D., Carmella, S. G., Chen, M., Jacobson, L. P., Muñoz, A., Egner, P. A., Chen, J. G., Qian, G. S., Chen, T. Y., Fahey, J. W., Talalay, P., Groopman, J. D., Yuan, J. M., & Hecht, S. S. (2012). Modulation of the metabolism of airborne pollutants by glucoraphanin-rich and sulforaphane-rich broccoli sprout beverages in Qidong, China. Carcinogenesis, 33(1), 101-107. https://doi.org/10.1093/carcin/bgr229
Kim, Y. C., Cha, A., Hussain, M., Lee, K., & Lee, S. (2020). Impact of Agrobacterium-infiltration and transient overexpression of BroMYB28 on glucoraphanin biosynthesis in broccoli leaves. Plant Biotechnology Reports, 14(3), 373-380. https://doi.org/10.1007/s11816-019-00591-8
Kokotou, M. G., Revelou, P. K., Pappas, C., & Constantinou-Kokotou, V. (2017). High resolution mass spectrometry studies of sulforaphane and indole-3-carbinol in broccoli. Food Chemistry, 237, 566-573. https://doi.org/10.1016/j.foodchem.2017.05.139
Korus, A., & Lisiewska, Z. (2011). Effect of preliminary processing and method of preservation on the content of selected antioxidative compounds in kale (Brassica oleracea L. var. acephala) leaves. Food Chemistry, 129(1), 149-154. https://doi.org/10.1016/j.foodchem.2011.04.048
Ku, K. M., Choi, J. H., Kim, H. S., Kushad, M. M., Jeffery, E. H., & Juvik, J. A. (2013). Methyl Jasmonate and 1-Methylcyclopropene Treatment Effects on Quinone Reductase Inducing Activity and Post-Harvest Quality of Broccoli. PLoS ONE, 8(10). https://doi.org/10.1371/journal.pone.0077127
Le, T. N., Sakulsataporn, N., Chiu, C. H., & Hsieh, P. C. (2020). Polyphenolic profile and varied bioactivities of processed Taiwanese grown broccoli: A comparative study of edible and non-edible parts. Pharmaceuticals, 13(5), 82. https://doi.org/10.3390/ph13050082
Lee, J. H., & Lee, H. Y. (2010). Effect of broccoli powder on consumer perception and sensory characteristics of cookies. Journal of Food Science and Nutrition, 15(4). https://doi.org/10.3746/jfn.2010.15.4.335
Lemoine, M. L., Civello, P. M., Chaves, A. R., & Martínez, G. A. (2008). Effect of combined treatment with hot air and UV-C on senescence and quality parameters of minimally processed broccoli (Brassica oleracea L. var. italica). Postharvest Biology and Technology, 48(1), 15-21. https://doi.org/10.1016/j.postharvbio.2007.09.016
Li, C., Liang, H., Yuan, Q., & Hou, X. (2008). Optimization of sulforaphane separation from broccoli seeds by macroporous resins. Separation Science and Technology, 43(3), 609-623. https://doi.org/10.1080/01496390701787222
Li, D., Li, L., Ge, Z., Limwachiranon, J., Ban, Z., Yang, D., & Luo, Z. (2017). Effects of hydrogen sulfide on yellowing and energy metabolism in broccoli. Postharvest Biology and Technology, 129, 136-142. https://doi.org/10.1016/j.postharvbio.2017.03.017
Lima, G. P. P., Da Rocha, S. A., Takaki, M., Ramos, P. R. R., & Ono, E. O. (2008). Comparison of polyamine, phenol and flavonoid contents in plants grown under conventional and organic methods. International Journal of Food Science and Technology, 43(10), 1838-1843. https://doi.org/10.1111/j.1365-2621.2008.01725.x
Liu, C., Yao, X., Li, G., Huang, L., & Xie, Z. (2020). Transcriptomic profiling of purple broccoli reveals light-induced anthocyanin biosynthetic signaling and structural genes. PeerJ, 2020(3). https://doi.org/10.7717/peerj.8870
Long, R. (2017). Broccoli extract and preparation method and application thereof (Patent No. 106963800A). https://bit.ly/3HtjmGo
Long, R., & Long, W. (2017a). Composition capable of improving human body nutritional equilibrium and preparation method and application thereof (Patent No. CN107095294A). https://bit.ly/3pqjQqS
Long, R., & Long, W. (2017b). Composition for premenstrual conditioning of females, and preparation method and application thereof (Patent No. 107156823A). https://bit.ly/3MbyA6L
Long, R., & Long, W. (2017c). Composition for regulating body fluid acid-base equilibrium as well as preparation method and application of composition (Patent No. CN107183703A).
López-Cervantes, J., Tirado-Noriega, L. G., Sánchez-Machado, D. I., Campas-Baypoli, O. N., Cantú-Soto, E. U., & Núñez-Gastélum, J. A. (2013). Biochemical composition of broccoli seeds and sprouts at different stages of seedling development. International journal of food science & technology, 48(11), 2267-2275. https://doi.org/10.1111/ijfs.12213
Ma, G., Zhang, L., Kato, M., Yamawaki, K., Asai, T., Nishikawa, F., Ikoma, Y., Matsumoto, H., Yamauchi, T., & Kamisako, T. (2012). Effect of electrostatic atomization on ascorbate metabolism in postharvest broccoli. Postharvest Biology and Technology, 74, 19-25. https://doi.org/10.1016/j.postharvbio.2012.07.001
Mahn, A. (2017). Modelling of the effect of selenium fertilization on the content of bioactive compounds in broccoli heads. Food Chemistry, 233, 492-499. https://doi.org/10.1016/j.foodchem.2017.04.144
Mahn, A., Martin, C., Reyes, A., & Saavedra, A. (2016). Evolution of sulforaphane content in sulforaphane-enriched broccoli during tray drying. Journal of Food Engineering, 186, 27-33. https://doi.org/10.1016/j.jfoodeng.2016.04.007
Mahn, A., Quintero, J., Castillo, N., & Comett, R. (2020). Effect of ultrasound-assisted blanching on myrosinase activity and sulforaphane content in broccoli florets. Catalysts, 10(6). https://doi.org/10.3390/catal10060616
Martínez-Ballesta, M. C., Zapata, L., Chalbi, N., & Carvajal, M. (2016). Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity. Journal of Nanobiotechnology, 14(1). https://doi.org/10.1186/s12951-016-0199-4
Martínez-Hernández, G. B., Artés-Hernández, F., Gómez, P. A., Formica, A. C., & Artés, F. (2013). Combination of electrolysed water, UV-C and superatmospheric O2 packaging for improving fresh-cut broccoli quality. Postharvest Biology and Technology, 76, 125-134. https://doi.org/10.1016/j.postharvbio.2012.09.013
Martínez-Hernández, G. B., Gómez, P. A., Pradas, I., Artés, F., & Artés-Hernández, F. (2011). Moderate UV-C pretreatment as a quality enhancement tool in fresh-cut Bimi® broccoli. Postharvest Biology and Technology, 62(3), 327-337. https://doi.org/10.1016/j.postharvbio.2011.06.015
Matusheski, N. V., & Jeffery, E. H. (2001). Comparison of the bioactivity of two glucoraphanin hydrolysis products found in broccoli, sulforaphane and sulforaphane nitrile. Journal of Agricultural and Food Chemistry, 49(12), 5473-5749. https://doi.org/10.1021/jf010809a
Mazov, N. A., Gureev, V. N., & Glinskikh, V. N. (2020). The Methodological Basis of Defining Research Trends and Fronts. Scientific and Technical Information Processing, 47(4), 221-231. https://doi.org/10.3103/S0147688220040036
McCarthy, B., Kapetanaki, A. B., & Wang, P. (2020). Completing the food waste management loop: Is there market potential for value-added surplus products (VASP)? Journal of Cleaner Production, 256. https://doi.org/10.1016/j.jclepro.2020.120435
Md Salim, N. S., Gariѐpy, Y., & Raghavan, V. (2019). Effects of Processing on Quality Attributes of Osmo-Dried Broccoli Stalk Slices. Food and Bioprocess Technology, 12(7), 120435. https://doi.org/10.1007/s11947-019-02282-2
Mehta, R. G., Murillo, G., Naithani, R., & Peng, X. (2010). Cancer chemoprevention by natural products: How far have we come? Pharmaceutical Research, 27, 950-961. https://doi.org/10.1007/s11095-010-0085-y
Miranda Rossetto, M. R., Shiga, T. M., Vianello, F., & Pereira Lima, G. P. (2013). Analysis of total glucosinolates and chromatographically purified benzylglucosinolate in organic and conventional vegetables. LWT, 50(1), 247-252. https://doi.org/10.1016/j.lwt.2012.05.022
Monllor, P., Muelas, R., Roca, A., Atzori, A. S., Díaz, J. R., Sendra, E., & Romero, G. (2020). Long‐term feeding of dairy goats with broccoli by‐ product and artichoke silages: Milk yield, quality and composition. Animals, 10(9), 1670. https://doi.org/10.3390/ani10091670
Olarte, C., Sanz, S., Federico Echávarri, J., & Ayala, F. (2009). Effect of plastic permeability and exposure to light during storage on the quality of minimally processed broccoli and cauliflower. LWT, 42(1), 402-411. https://doi.org/10.1016/j.lwt.2008.07.001
Parfitt, J., Barthel, M., & MacNaughton, S. (2010). Food waste within food supply chains: Quantification and potential for change to 2050. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554). https://doi.org/10.1098/rstb.2010.0126
Paulsen, E., Moreno, D. A., Periago, P. M., & Lema, P. (2021). Influence of microwave bag vs. conventional microwave cooking on phytochemicals of industrially and domestically processed broccoli. Food Research International, 140, 110077. https://doi.org/10.1016/j.foodres.2020.110077
Perini, M. A., Sin, I. N., Reyes Jara, A. M., Gómez Lobato, M. E., Civello, P. M., & Martínez, G. A. (2017). Hot water treatments performed in the base of the broccoli stem reduce postharvest senescence of broccoli (Brassica oleracea L. Var italic) heads stored at 20 °C. LWT, 77, 314-322. https://doi.org/10.1016/j.lwt.2016.11.066
Razaghi, A., Karthikeyan, O. P., Hao, H. T. N., & Heimann, K. (2016). Hydrolysis treatments of fruit and vegetable waste for production of biofuel precursors. Bioresource Technology, 217, 100-103. https://doi.org/10.1016/j.biortech.2016.03.041
Rivera-Martin, A., Broadley, M. R., & Poblaciones, M. J. (2020). Soil and foliar zinc application to biofortify broccoli (Brassica oleracea var. italica L.): Effects on the zinc concentration and bioavailability. Plant, Soil and Environment, 66(3), 113-118. https://doi.org/10.17221/14/2020-PSE
Rybarczyk-Plonska, A., Hagen, S. F., Borge, G. I. A., Bengtsson, G. B., Hansen, M. K., & Wold, A. B. (2016). Glucosinolates in broccoli (Brassica oleracea L. var. italica) as affected by postharvest temperature and radiation treatments. Postharvest Biology and Technology, 116, 16-25. https://doi.org/10.1016/j.postharvbio.2015.12.010
Serrano, M., Martinez-Romero, D., Guillén, F., Castillo, S., & Valero, D. (2006). Maintenance of broccoli quality and functional properties during cold storage as affected by modified atmosphere packaging. Postharvest Biology and Technology, 39(1), 61-68. https://doi.org/10.1016/j.postharvbio.2005.08.004
Shokri, S., Jegasothy, H., Augustin, M. A., & Terefe, N. S. (2021). Thermosonication for the production of sulforaphane rich broccoli ingredients. Biomolecules, 11(2), 321. https://doi.org/10.3390/biom11020321
Si, Y. Z., Gao, J., Li, H. X., Zhu, Y. Q., Luo, F. Y., & Deng, L. M. (2017). Effect of Packaging Film Permeability on the Quality of Postharvest Broccoli during Cold Storage. Modern Food Science and Technology, 33(7). https://doi.org/10.13982/j.mfst.1673-9078.2017.7.027
Soares, A., Carrascosa, C., & Raposo, A. (2017). Influence of Different Cooking Methods on the Concentration of Glucosinolates and Vitamin C in Broccoli. Food and Bioprocess Technology, 10(8), 1387-1411. https://doi.org/10.1007/s11947-017-1930-3
Sohail, M., Wills, R. B. H., Bowyer, M. C., & Pristijono, P. (2021). Multiple amino acids inhibit postharvest senescence of broccoli. Horticulturae, 7(4), 71. https://doi.org/10.3390/horticulturae7040071
Sun, S. J., Xie, X. L., Li, W. X., Wang, L. J., & Zhang, S. J. (2013). Effects of radix sophorae subprostratae, myristica fragrans and its complex extract on the fresh-keeping of broccoli. Modern Food Science and Technology, 29(2). https://caod.oriprobe.com/articles/31717115/Effects_of_Radix_Sophorae_Subprostratae__Myristica.htm
Supapvanich, S., Anan, W., & Chimsonthorn, V. (2019). Efficiency of combinative salicylic acid and chitosan preharvest-treatment on antioxidant and phytochemicals of ready to eat daikon sprouts during storage. Food Chemistry, 284, 8-15. https://doi.org/10.1016/j.foodchem.2019.01.100
Tian, M., Xu, X., Hu, H., Liu, Y., & Pan, S. (2017). Optimisation of enzymatic production of sulforaphane in broccoli sprouts and their total antioxidant activity at different growth and storage days. Journal of Food Science and Technology, 54, 209-218. https://doi.org/10.1007/s13197-016-2452-0
Vallejo, F., Tomás-Barberán, F. A., & García-Viguera, C. (2003). Effect of climatic and sulphur fertilisation conditions, on phenolic compounds and vitamin C, in the inflorescences of eight broccoli cultivars. European Food Research and Technology, 216, 395-401. https://doi.org/10.1007/s00217-003-0664-9
van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84, 523-538. https://doi.org/10.1007/s11192-009-0146-3
Wang, G. C., Farnham, M., & Jeffery, E. H. (2012). Impact of thermal processing on sulforaphane yield from Broccoli (Brassica oleracea L. ssp. italica). Journal of Agricultural and Food Chemistry, 60(27), 6743-6748. https://doi.org/10.1021/jf2050284
Wang, H. W., Makino, Y., Inoue, J., Maejima, K., Funayama-Noguchi, S., Yamada, T., & Noguchi, K. (2017). Influence of a modified atmosphere on the induction and activity of respiratory enzymes in broccoli florets during the early stage of postharvest storage. Journal of Agricultural and Food Chemistry, 65(39), 8538-8543. https://doi.org/10.1021/acs.jafc.7b02318
Wang, L., Wang, F., Zhang, Y., Ma, Y., Guo, Y., & Zhang, X. (2020). Enhancing the ascorbate–glutathione cycle reduced fermentation by increasing NAD+ levels during broccoli head storage under controlled atmosphere. Postharvest Biology and Technology, 165, 111169. https://doi.org/10.1016/j.postharvbio.2020.111169
Wojciechowska, R., Hanus-Fajerska, E. J., Kołton, A., Kamińska, I., Grabowska, A., & Kunicki, E. (2013). The effect of seedling chilling on glutathione content, catalase and peroxidase activity in Brassica oleracea L. var. italic. Acta Societatis Botanicorum Poloniae, 82(3). https://doi.org/10.5586/asbp.2013.020
Wu, X., Conkle, J. L., & Gan, J. (2012). Multi-residue determination of pharmaceutical and personal care products in vegetables. Journal of Chromatography A, 1254, 78-86. https://doi.org/10.1016/j.chroma.2012.07.041
Xu, F., Wang, H., Tang, Y., Dong, S., Qiao, X., Chen, X., & Zheng, Y. (2016). Effect of 1-methylcyclopropene on senescence and sugar metabolism in harvested broccoli florets. Postharvest Biology and Technology, 116, 45-49. https://doi.org/10.1016/j.postharvbio.2016.01.004
Xu, Y., Xiao, Y., Lagnika, C., Song, J., Li, D., Liu, C., Jiang, N., Zhang, M., & Duan, X. (2020). A comparative study of drying methods on physical characteristics, nutritional properties and antioxidant capacity of broccoli. Drying Technology, 38(10), 1378-1388. https://doi.org/10.1080/07373937.2019.1656642
Yanaka, A. (2017). Daily intake of sulforaphane-rich broccoli sprouts normalizes bowel habits in healthy human subjects. FASEB Journal, 31(1). https://doi.org/10.1096/fasebj.31.1_supplement.972.20
Yilmaz, E., & Bagci, P. O. (2019). Ultrafiltration of Broccoli Juice Using Polyethersulfone Membrane: Fouling Analysis and Evaluation of the Juice Quality. Food and Bioprocess Technology, 12, 1273-1283. https://doi.org/10.1007/s11947-019-02292-0
Yilmaz, M. S., Şakiyan, Ö., Barutcu Mazi, I., & Mazi, B. G. (2019). Phenolic content and some physical properties of dried broccoli as affected by drying method. Food Science and Technology International, 25(1). https://doi.org/10.1177/1082013218797527
Zhang, J., Yan, X., & Chen, Y. (2018). Pressed vegetable candy and preparation method thereof (Patent No. CN107616290A). https://bit.ly/3BYGsUa
Zhao, S. (2018). Great-healthy meal replacement food capable of reducing weight (Patent No. 107997149A).
Zhong, X., Siddiq, M., Sogi, D. S., Harte, B., Dolan, K. D., & Almenar, E. (2017). Effect of microwave steamable bag design on the preservation of ascorbic acid and antioxidant capacity and on the physical properties of cooked frozen vegetables: A case study on broccoli (Brassica oleracea). LWT, 83, 165-171. https://doi.org/10.1016/j.lwt.2017.05.018