Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio

Identificación de conocimientos y tecnologías para el uso poscosecha del brócoli (Brassica oleracea var. italica) y sus subproductos: análisis cienciométrico

Corporación Colombiana de Investigación Agropecuaria [AGROSAVIA]
Corporación Colombiana de Investigación Agropecuaria [Agrosavia]
Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA
compuestos bioactivos capacidad antioxidante valor añadido polvo de brócoli excedente de cosecha secado en frío

Resumen

El aprovechamiento de los subproductos de cultivos se ha convertido en una línea de investigación clave en el contexto actual de economía circular y bioeconomía. En Colombia, los residuos de cosecha y poscosecha, así como los excedentes de cultivos, han sido subutilizados como fuente potencial de compuestos bioactivos. El objetivo de esta investigación fue analizar las tendencias y tecnologías utilizadas para el aprovechamiento de los subproductos del cultivo de brócoli (Brassica oleracea var. italica). Se identificaron las líneas de investigación actuales en poscosecha y procesamiento, así como tecnologías en temas como senescencia, empaque y transporte, vida útil, calidad, proceso de secado y subproductos. Se destaca la escasez de resultados de investigación sobre los subproductos del brócoli y su uso o potencial aprovechamiento, lo que demuestra la oportunidad de fortalecer la investigación en este tema. Por último, se establecen retos y trabajos futuros para la investigación del aprovechamiento de los subproductos del brócoli mediante el uso de sus compuestos bioactivos en productos de valor agregado.

Quintero Vásquez, L. M. ., Zambrano Muñoz, A. del P., & Flórez Martínez, D. H. (2024). Identificación de conocimientos y tecnologías para el uso poscosecha del brócoli (Brassica oleracea var. italica) y sus subproductos: análisis cienciométrico. Ciencia Y Tecnología Agropecuaria, 25(2). https://doi.org/10.21930/rcta.vol25_num2_art:3343

Abellán, Á., Domínguez-Perles, R., Giménez, M. J., Zapata, P. J., Valero, D., & García-Viguera, C. (2021). The development of a broccoli supplemented beer allows obtaining a valuable dietary source of sulforaphane. Food Bioscience, 39. https://doi.org/10.1016/j.fbio.2020.100814

Aguilar-Camacho, M., Welti-Chanes, J., & Jacobo-Velázquez, D. A. (2019). Combined effect of ultrasound treatment and exogenous phytohormones on the accumulation of bioactive compounds in broccoli florets. Ultrasonics Sonochemistry, 50, 289-301. https://doi.org/10.1016/j.ultsonch.2018.09.031

Ahlawat, Y., & Liu, T. (2021). Varied expression of senescence-associated and ethylene-related genes during postharvest storage of brassica vegetables. International Journal of Molecular Sciences, 22(2), 839. https://doi.org/10.3390/ijms22020839

Aiamla-or, S., Shigyo, M., & Yamauchi, N. (2019). UV-B treatment controls chlorophyll degradation and related gene expression in broccoli (Brassica oleracea L. Italica Group) florets during storage. Scientia Horticulturae, 243, 524-527. https://doi.org/10.1016/j.scienta.2018.09.009

Alvarez-Jubete, L., Valverde, J., Kehoe, K., Reilly, K., Rai, D. K., & Barry-Ryan, C. (2014). Development of a Novel Functional Soup Rich in Bioactive Sulforaphane Using Broccoli (Brassica oleracea L. ssp. italica) Florets and Byproducts. Food and Bioprocess Technology, 7(5), 1310-1321. https://doi.org/10.1007/s11947-013-1113-9

Ansorena, M. R., Marcovich, N. E., & Roura, S. I. (2011). Impact of edible coatings and mild heat shocks on quality of minimally processed broccoli (Brassica oleracea L.) during refrigerated storage. Postharvest Biology and Technology, 59(1), 53-63. https://doi.org/10.1016/j.postharvbio.2010.08.011

Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007

Arnáiz, E., Bernal, J., Martín, M. T., García-Viguera, C., Bernal, J. L., & Toribio, L. (2011). Supercritical fluid extraction of lipids from broccoli leaves. European Journal of Lipid Science and Technology, 113(4), 479-486. https://doi.org/10.1002/ejlt.201000407

Asoda, T., Terai, H., Kato, M., & Suzuki, Y. (2009). Effects of postharvest ethanol vapor treatment on ethylene responsiveness in broccoli. Postharvest Biology and Technology, 52(2), 216-220. https://doi.org/10.1016/j.postharvbio.2008.09.015

Becker, T. M., Jeffery, E. H., & Juvik, J. A. (2017). Proposed method for estimating health-promoting glucosinolates and hydrolysis products in broccoli (Brassica oleracea var. italica) using relative transcript abundance. Journal of Agricultural and Food Chemistry, 65(2), 301-308. https://doi.org/10.1021/acs.jafc.6b04668

Ben-Fadhel, Y., Ziane, N., Salmieri, S., & Lacroix, M. (2018). Combined Post-harvest Treatments for Improving Quality and Extending Shelf-Life of Minimally Processed Broccoli Florets (Brassica oleracea var. italica). Food and Bioprocess Technology, 11(1), 84-95. https://doi.org/10.1007/s11947-017-1992-2

Bessler, H., & Djaldetti, M. (2018). Broccoli and human health: immunomodulatory effect of sulforaphane in a model of colon cancer. International Journal of Food Sciences and Nutrition, 69(8), 946-953. https://doi.org/10.1080/09637486.2018.1439901

Bisharat, G. I., Katsavou, I. D., Panagiotou, N. M., Krokida, M. K., & Maroulis, Z. B. (2015). Investigation of functional properties and color changes of corn extrudates enriched with broccoli or olive paste. Food Science and Technology International, 21(8). https://doi.org/10.1177/1082013214559310

Borowski, J., Szajdek, A., Borowska, E. J., Ciska, E., & Zieliński, H. (2008). Content of selected bioactive components and antioxidant properties of broccoli (Brassica oleracea L.). European Food Research and Technology, 226(3), 459-465. https://doi.org/10.1007/s00217-006-0557-9

Branham, S. E., & Farnham, M. W. (2017). Genotyping-by-sequencing of waxy and glossy near-isogenic broccoli lines. Euphytica, 213(4). https://doi.org/10.1007/s10681-017-1873-9

Cai, Y. X., Augustin, M. A., Jegasothy, H., Wang, J. H., & Terefe, N. S. (2020). Mild heat combined with lactic acid fermentation: A novel approach for enhancing sulforaphane yield in broccoli puree. Food and Function, 11(1). https://doi.org/10.1039/c9fo02089f

Calderón-Alvarado, M. P., Alvarado-Orozco, J. M., Herrera-Hernández, E. C., Martínez-González, G. M., Miranda-López, R., & Jiménez-Islas, H. (2016). Effect of two viscosity models on lethality estimation in sterilization of liquid canned foods. Food Science and Technology International, 22(6). https://doi.org/10.1177/1082013215627393

Caleb, O. J., Ilte, K., Fröhling, A., Geyer, M., & Mahajan, P. V. (2016). Integrated modified atmosphere and humidity package design for minimally processed Broccoli (Brassica oleracea L. var. italica). Postharvest Biology and Technology, 121, 87-100. https://doi.org/10.1016/j.postharvbio.2016.07.016

Castillejo, N., Martínez-Zamora, L., Gómez, P. A., Pennisi, G., Crepaldi, A., Fernández, J. A., Orsini, F., & Artés-Hernández, F. (2021). Postharvest LED lighting: effect of red, blue and far red on quality of minimally processed broccoli sprouts. Journal of the Science of Food and Agriculture, 101(1), 44-53. https://doi.org/10.1002/jsfa.10820

Che, C., Li, Y., Liang, X., Gong, Z., Liu, J., & Yang, G. (2019). A novel biodegradable hollow nanocarrier consisting superparamagnetic Fe3O4-loaded poly-γ-glutamic acid and chitosan oligosaccharide for targeted delivery of sulforaphane from broccoli seed extracts. Journal of Hard Tissue Biology, 28(3), 297-302. https://doi.org/10.2485/jhtb.28.297

Chen, X. (2017). Barley seedling powder solid beverage and preparation method thereof (Patent No. CN106879902A). https://bit.ly/3K1yEEe

Chi, G. (2018). Nutritional food with vegetable and fruit powder and convenient to eat (Patent No. CN107581603A). https://bit.ly/36Dw1da

Chiang, C. M., Chen, S. P., Chen, L. F. O., Chiang, M. C., Chien, H. L., & Lin, K. H. (2014). Expression of the broccoli catalase gene (BoCAT) enhances heat tolerance in transgenic Arabidopsis. Journal of Plant Biochemistry and Biotechnology, 23(3), 266-277. https://doi.org/10.1007/s13562-013-0210-1

Cobo, M. J. (2020). Identification and Visualization of the Conceptual Structure and Main Research Themes of Studies in Informatics and Control Journal from 2008 to 2019. September. https://doi.org/10.24846/v29i2y202002

Conzatti, A., Telles da Silva Froes, F. C., Schweigert Perry, I. D., & Guerini de Souza, C. (2015). Clinical and Molecular Evidence of the Consumption of Broccoli, Glucoraphanin and Sulforaphane in Humans. Nutricion Hospitalaria, 31(02), 259-569. https://www.nutricionhospitalaria.org/articles/H1243/show

Córdova, C., Vivanco, J. P., Quintero, J., & Mahn, A. (2020). Effect of drum-drying conditions on the content of bioactive compounds of broccoli pulp. Foods, 9(9). https://doi.org/10.3390/foods9091224

Cuccurullo, C., Aria, M., & Sarto, F. (2016). Foundations and trends in performance management. A twenty-five years bibliometric analysis in business and public administration domains. Scientometrics, 108, 595-611. https://doi.org/10.1007/s11192-016-1948-8

Dai, P., Yu, Y., Yu, J., Jin, W., & Yu, O. (2017). Meal replacement solid beverage contributing to reducing weight and preparation method of meal replacement solid beverage (Patent No. 07467462A).

Diaz-Monroy, B. L., Iglesias, A. E., & Valiño-Cabrera, E. C. (2014). Evaluation of bioensilage of broccoli (Brassica oleracea L.) and oats (Avena sativa L.) as supplements for dairy cows. Archivos Latinoamericanos de Producción Animal, 22(1/2), 21-29. https://ojs.alpa.uy/index.php/ojs_files/article/view/2378

Ding, T., Gobber, C., Santana, J. C. C., Alves, W. A. L., Araújo, S. A., & Dong-Hong, L. (2018). Combination of optimization techniques to find of processing optimal condition of postharvest broccoli by vacuum cooling process. Acta Scientiarum - Technology, 40. https://doi.org/10.4025/actascitechnol.v40i1.36222

Drabińska, N., Ciska, E., Szmatowicz, B., & Krupa-Kozak, U. (2018). Broccoli by-products improve the nutraceutical potential of gluten-free mini sponge cakes. Food Chemistry, 267, 170-177. https://doi.org/10.1016/j.foodchem.2017.08.119

Duarte-Sierra, A., Nadeau, F., Angers, P., Michaud, D., & Arul, J. (2019). UV-C hormesis in broccoli florets: Preservation, phyto-compounds and gene expression. Postharvest Biology and Technology, 157. https://doi.org/10.1016/j.postharvbio.2019.110965

Fahey, J. W., Wade, K. L., Stephenson, K. K., Panjwani, A. A., Liu, H., Cornblatt, G., Cornblatt, B. S., Ownby, S. L., Fuchs, E., Holtzclaw, W. D., & Cheskin, L. J. (2019). Bioavailability of sulforaphane following ingestion of glucoraphanin-rich broccoli sprout and seed extracts with active myrosinase: A pilot study of the effects of proton pump inhibitor administration. Nutrients, 11(7). https://doi.org/10.3390/nu11071489

FAO. (2012). Pérdidas y desperdicio de alimentos en el mundo – Alcance, causas y prevención. https://www.fao.org/sustainable-food-value-chains/library/detalles/es/c/278445/

FAO. (2019). El estado mundial de la agricultura y la alimentación. Progresos en la lucha contra la pérdida y el desperdicio de alimentos. https://www.fao.org/agrifood-economics/publications/detail/es/c/1476297/

FAO. (2021). El estado mundial de la agricultura y la alimentación 2021. https://doi.org/10.4060/cb4476es

Flórez-Martínez, D.-H., & Uribe-Galvis, C. P. (2020). Fourth Industrial Revolution Technologies for Agriculture Sector: A Trend Analysis in Agriculture 4.0. In Proceedings of the 18th LACCEI International Multi-Conference for Engineering, Education, and Technology: "Engineering, Integration, and Alliances for a Sustainable Development" (pp. 1-12). http://dx.doi.org/10.18687/LACCEI2020.1.1.11

Gao, J., Si, Y., Zhu, Y., Luo, F., & Yan, S. (2018). Temperature abuse timing affects the rate of quality deterioration of postharvest broccoli during different pre-storage stages. Scientia Horticulturae, 227, 207-212. https://doi.org/10.1016/j.scienta.2017.09.034

García-Saldaña, J. S., Campas-Baypoli, O. N., Sánchez-Machado, D. I., & López-Cervantes, J. (2018). Separation and purification of sulforaphane (1-isothiocyanato-4-(methylsulfinyl) butane) from broccoli seeds by consecutive steps of adsorption-desorption-bleaching. Journal of Food Engineering, 237, 162-170. https://doi.org/10.1016/j.jfoodeng.2018.06.002

Gaskin, J. W., Cabrera, M. L., Kissel, D. E., & Hitchcock, R. (2020). Using the cover crop N calculator for adaptive nitrogen fertilizer management: A proof of concept. Renewable Agriculture and Food Systems, 35(5). https://doi.org/10.1017/S1742170519000152

Georgikou, C., Buglioni, L., Bremerich, M., Roubicek, N., Yin, L., Gross, W., Sticht, C., Bolm, C., & Herr, I. (2020). Novel broccoli sulforaphane-based analogues inhibit the progression of pancreatic cancer without side effects. Biomolecules, 10(5). https://doi.org/10.3390/biom10050769

Gómez-Lobato, M. E., Mansilla, S. A., Civello, P. M., & Martínez, G. A. (2014). Expression of Stay-Green encoding gene (BoSGR) during postharvest senescence of broccoli. Postharvest Biology and Technology, 95, 88-94. https://doi.org/10.1016/j.postharvbio.2014.04.010

González, F., Quintero, J., Del Río, R., & Mahn, A. (2021). Optimization of an extraction process to obtain a food-grade sulforaphane-rich extract from broccoli (Brassica oleracea var. italica). Molecules, 26(13). https://doi.org/10.3390/molecules26134042

Guo, R., Hou, Q., Yuan, G., Zhao, Y., & Wang, Q. (2014). Effect of 2, 4-epibrassinolide on main health-promoting compounds in broccoli sprouts. LWT, 58(1), 287-292. https://doi.org/10.1016/j.lwt.2014.02.047

Guo, Y., Gao, Z., Li, L., Wang, Y., Zhao, H., Hu, M., Li, M., & Zhang, Z. (2013). Effect of controlled atmospheres with varying O2/CO2 levels on the postharvest senescence and quality of broccoli (Brassica oleracea L. var. italica) florets. European Food Research and Technology, 237(6), 943-950. https://doi.org/10.1007/s00217-013-2064-0

Guo, Y., Wang, L., Chen, Y., Yun, L., Liu, S., & Li, Y. (2018). Stalk length affects the mineral distribution and floret quality of broccoli (Brassica oleracea L. var. italica) heads during storage. Postharvest Biology and Technology, 145, 166-171. https://doi.org/10.1016/j.postharvbio.2018.07.003

Hasperué, J. H., Guardianelli, L., Rodoni, L. M., Chaves, A. R., & Martínez, G. A. (2016). Continuous white-blue LED light exposition delays postharvest senescence of broccoli. LWT, 65, 495-502. https://doi.org/10.1016/j.lwt.2015.08.041

Henao-Rojas, J., Alzate, L., Vargas, M., Garcia-Alzate, L., Quintero, L., & Franco, G. (2020). EVALUACIÓN DE LAS CARACTERÍSTICAS DE LOS EXCEDENTES PRODUCTIVOS DE BRÓCOLI Y LECHUGA Y SU POTENCIAL APROVECHAMIENTO. Memorias Del Encuentro Lasallista de Investigación, 126-145.

Hu, C. H., Zuo, A. Y., Wang, D. G., Pan, H. Y., Zheng, W. B., Qian, Z. C., & Zou, X. T. (2011). Effects of broccoli stems and leaves meal on production performance and egg quality of laying hens. Animal Feed Science and Technology, 170(1–2), 117-121. https://doi.org/10.1016/j.anifeedsci.2011.07.019

Huang, J., & Pan, F. (2018). High-selenium broccoli pressed candy and preparation method thereof. https://bit.ly/36DwNH6

Iribe-Salazar, R., Caro-Corrales, J., Hernández-Calderón, Ó., Zazueta-Niebla, J., Gutiérrez-Dorado, R., Carrazco-Escalante, M., & Vázquez-López, Y. (2015). Heat transfer during blanching and hydrocooling of broccoli florets. Journal of Food Science, 80(12), E2774-E2781. https://doi.org/10.1111/1750-3841.13109

Javaid, A., Shahzad, G. I. R., Akhtar, N., & Ahmed, D. (2018). Alternaria leaf spot disease of Broccoli in Pakistan and management of the pathogen by leaf extract of Syzygium cumini. Pakistan Journal of Botany, 50(4). https://www.pakbs.org/pjbot/paper_details.php?id=7676

Jin, X., van der Sman, R. G. M., & van Boxtel, A. J. B. (2011). Evaluation of the free volume theory to predict moisture transport and quality changes during broccoli drying. Drying Technology, 29(16), 1963-1971. https://doi.org/10.1080/07373937.2011.596298

Kaneko, K., Otoguro, C., Kikuchi, S., Odake, S., Sumino, T., Tsuji, K., & Saito, K. (1999). Changes in Various Ingredients, Escherichia coli, Taste and Texture of Blade Vegetables as a Result of Low Temperature Steam-Heating Process. Food Science and Technology Research, 5(2), 145-152. https://doi.org/10.3136/fstr.5.145

Kang, Y., Jin, X., Wu, W., & Yang, W. (2019). Fruit-vegetable solid beverage for eliminating toxins and beautifying skins with high dietary fiber content and preparation method thereof. https://bit.ly/3Mbyg83

Kapusta-Duch, J., Leszczyńska, T., Borczak, B., Florkiewicz, A., & Ambroszczyk, A. (2019). Impact of Different Packaging Systems on Selected Antioxidant Properties of Frozen-Stored Broccoli. Ecological Chemistry and Engineering S, 26(2). https://doi.org/10.1515/eces-2019-0027

Kato, M., Kamo, T., Wang, R., Nishikawa, F., Hyodo, H., Ikoma, Y., Sugiura, M., & Yano, M. (2002). Wound-induced ethylene synthesis in stem tissue of harvested broccoli and its effect on senescence and ethylene synthesis in broccoli florets. Postharvest Biology and Technology, 24(1), 69-78. https://doi.org/10.1016/S0925-5214(01)00111-9

Kaur, C., & Kapoor, H. C. (2002). Anti-oxidant activity and total phenolic content of some Asian vegetables. International Journal of Food Science and Technology, 37(2), 153-161. https://doi.org/10.1046/j.1365-2621.2002.00552.x

Kensler, T. W., Ng, D., Carmella, S. G., Chen, M., Jacobson, L. P., Muñoz, A., Egner, P. A., Chen, J. G., Qian, G. S., Chen, T. Y., Fahey, J. W., Talalay, P., Groopman, J. D., Yuan, J. M., & Hecht, S. S. (2012). Modulation of the metabolism of airborne pollutants by glucoraphanin-rich and sulforaphane-rich broccoli sprout beverages in Qidong, China. Carcinogenesis, 33(1), 101-107. https://doi.org/10.1093/carcin/bgr229

Kim, Y. C., Cha, A., Hussain, M., Lee, K., & Lee, S. (2020). Impact of Agrobacterium-infiltration and transient overexpression of BroMYB28 on glucoraphanin biosynthesis in broccoli leaves. Plant Biotechnology Reports, 14(3), 373-380. https://doi.org/10.1007/s11816-019-00591-8

Kokotou, M. G., Revelou, P. K., Pappas, C., & Constantinou-Kokotou, V. (2017). High resolution mass spectrometry studies of sulforaphane and indole-3-carbinol in broccoli. Food Chemistry, 237, 566-573. https://doi.org/10.1016/j.foodchem.2017.05.139

Korus, A., & Lisiewska, Z. (2011). Effect of preliminary processing and method of preservation on the content of selected antioxidative compounds in kale (Brassica oleracea L. var. acephala) leaves. Food Chemistry, 129(1), 149-154. https://doi.org/10.1016/j.foodchem.2011.04.048

Ku, K. M., Choi, J. H., Kim, H. S., Kushad, M. M., Jeffery, E. H., & Juvik, J. A. (2013). Methyl Jasmonate and 1-Methylcyclopropene Treatment Effects on Quinone Reductase Inducing Activity and Post-Harvest Quality of Broccoli. PLoS ONE, 8(10). https://doi.org/10.1371/journal.pone.0077127

Le, T. N., Sakulsataporn, N., Chiu, C. H., & Hsieh, P. C. (2020). Polyphenolic profile and varied bioactivities of processed Taiwanese grown broccoli: A comparative study of edible and non-edible parts. Pharmaceuticals, 13(5), 82. https://doi.org/10.3390/ph13050082

Lee, J. H., & Lee, H. Y. (2010). Effect of broccoli powder on consumer perception and sensory characteristics of cookies. Journal of Food Science and Nutrition, 15(4). https://doi.org/10.3746/jfn.2010.15.4.335

Lemoine, M. L., Civello, P. M., Chaves, A. R., & Martínez, G. A. (2008). Effect of combined treatment with hot air and UV-C on senescence and quality parameters of minimally processed broccoli (Brassica oleracea L. var. italica). Postharvest Biology and Technology, 48(1), 15-21. https://doi.org/10.1016/j.postharvbio.2007.09.016

Li, C., Liang, H., Yuan, Q., & Hou, X. (2008). Optimization of sulforaphane separation from broccoli seeds by macroporous resins. Separation Science and Technology, 43(3), 609-623. https://doi.org/10.1080/01496390701787222

Li, D., Li, L., Ge, Z., Limwachiranon, J., Ban, Z., Yang, D., & Luo, Z. (2017). Effects of hydrogen sulfide on yellowing and energy metabolism in broccoli. Postharvest Biology and Technology, 129, 136-142. https://doi.org/10.1016/j.postharvbio.2017.03.017

Lima, G. P. P., Da Rocha, S. A., Takaki, M., Ramos, P. R. R., & Ono, E. O. (2008). Comparison of polyamine, phenol and flavonoid contents in plants grown under conventional and organic methods. International Journal of Food Science and Technology, 43(10), 1838-1843. https://doi.org/10.1111/j.1365-2621.2008.01725.x

Liu, C., Yao, X., Li, G., Huang, L., & Xie, Z. (2020). Transcriptomic profiling of purple broccoli reveals light-induced anthocyanin biosynthetic signaling and structural genes. PeerJ, 2020(3). https://doi.org/10.7717/peerj.8870

Long, R. (2017). Broccoli extract and preparation method and application thereof (Patent No. 106963800A). https://bit.ly/3HtjmGo

Long, R., & Long, W. (2017a). Composition capable of improving human body nutritional equilibrium and preparation method and application thereof (Patent No. CN107095294A). https://bit.ly/3pqjQqS

Long, R., & Long, W. (2017b). Composition for premenstrual conditioning of females, and preparation method and application thereof (Patent No. 107156823A). https://bit.ly/3MbyA6L

Long, R., & Long, W. (2017c). Composition for regulating body fluid acid-base equilibrium as well as preparation method and application of composition (Patent No. CN107183703A).

López-Cervantes, J., Tirado-Noriega, L. G., Sánchez-Machado, D. I., Campas-Baypoli, O. N., Cantú-Soto, E. U., & Núñez-Gastélum, J. A. (2013). Biochemical composition of broccoli seeds and sprouts at different stages of seedling development. International journal of food science & technology, 48(11), 2267-2275. https://doi.org/10.1111/ijfs.12213

Ma, G., Zhang, L., Kato, M., Yamawaki, K., Asai, T., Nishikawa, F., Ikoma, Y., Matsumoto, H., Yamauchi, T., & Kamisako, T. (2012). Effect of electrostatic atomization on ascorbate metabolism in postharvest broccoli. Postharvest Biology and Technology, 74, 19-25. https://doi.org/10.1016/j.postharvbio.2012.07.001

Mahn, A. (2017). Modelling of the effect of selenium fertilization on the content of bioactive compounds in broccoli heads. Food Chemistry, 233, 492-499. https://doi.org/10.1016/j.foodchem.2017.04.144

Mahn, A., Martin, C., Reyes, A., & Saavedra, A. (2016). Evolution of sulforaphane content in sulforaphane-enriched broccoli during tray drying. Journal of Food Engineering, 186, 27-33. https://doi.org/10.1016/j.jfoodeng.2016.04.007

Mahn, A., Quintero, J., Castillo, N., & Comett, R. (2020). Effect of ultrasound-assisted blanching on myrosinase activity and sulforaphane content in broccoli florets. Catalysts, 10(6). https://doi.org/10.3390/catal10060616

Martínez-Ballesta, M. C., Zapata, L., Chalbi, N., & Carvajal, M. (2016). Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity. Journal of Nanobiotechnology, 14(1). https://doi.org/10.1186/s12951-016-0199-4

Martínez-Hernández, G. B., Artés-Hernández, F., Gómez, P. A., Formica, A. C., & Artés, F. (2013). Combination of electrolysed water, UV-C and superatmospheric O2 packaging for improving fresh-cut broccoli quality. Postharvest Biology and Technology, 76, 125-134. https://doi.org/10.1016/j.postharvbio.2012.09.013

Martínez-Hernández, G. B., Gómez, P. A., Pradas, I., Artés, F., & Artés-Hernández, F. (2011). Moderate UV-C pretreatment as a quality enhancement tool in fresh-cut Bimi® broccoli. Postharvest Biology and Technology, 62(3), 327-337. https://doi.org/10.1016/j.postharvbio.2011.06.015

Matusheski, N. V., & Jeffery, E. H. (2001). Comparison of the bioactivity of two glucoraphanin hydrolysis products found in broccoli, sulforaphane and sulforaphane nitrile. Journal of Agricultural and Food Chemistry, 49(12), 5473-5749. https://doi.org/10.1021/jf010809a

Mazov, N. A., Gureev, V. N., & Glinskikh, V. N. (2020). The Methodological Basis of Defining Research Trends and Fronts. Scientific and Technical Information Processing, 47(4), 221-231. https://doi.org/10.3103/S0147688220040036

McCarthy, B., Kapetanaki, A. B., & Wang, P. (2020). Completing the food waste management loop: Is there market potential for value-added surplus products (VASP)? Journal of Cleaner Production, 256. https://doi.org/10.1016/j.jclepro.2020.120435

Md Salim, N. S., Gariѐpy, Y., & Raghavan, V. (2019). Effects of Processing on Quality Attributes of Osmo-Dried Broccoli Stalk Slices. Food and Bioprocess Technology, 12(7), 120435. https://doi.org/10.1007/s11947-019-02282-2

Mehta, R. G., Murillo, G., Naithani, R., & Peng, X. (2010). Cancer chemoprevention by natural products: How far have we come? Pharmaceutical Research, 27, 950-961. https://doi.org/10.1007/s11095-010-0085-y

Miranda Rossetto, M. R., Shiga, T. M., Vianello, F., & Pereira Lima, G. P. (2013). Analysis of total glucosinolates and chromatographically purified benzylglucosinolate in organic and conventional vegetables. LWT, 50(1), 247-252. https://doi.org/10.1016/j.lwt.2012.05.022

Monllor, P., Muelas, R., Roca, A., Atzori, A. S., Díaz, J. R., Sendra, E., & Romero, G. (2020). Long‐term feeding of dairy goats with broccoli by‐ product and artichoke silages: Milk yield, quality and composition. Animals, 10(9), 1670. https://doi.org/10.3390/ani10091670

Olarte, C., Sanz, S., Federico Echávarri, J., & Ayala, F. (2009). Effect of plastic permeability and exposure to light during storage on the quality of minimally processed broccoli and cauliflower. LWT, 42(1), 402-411. https://doi.org/10.1016/j.lwt.2008.07.001

Parfitt, J., Barthel, M., & MacNaughton, S. (2010). Food waste within food supply chains: Quantification and potential for change to 2050. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554). https://doi.org/10.1098/rstb.2010.0126

Paulsen, E., Moreno, D. A., Periago, P. M., & Lema, P. (2021). Influence of microwave bag vs. conventional microwave cooking on phytochemicals of industrially and domestically processed broccoli. Food Research International, 140, 110077. https://doi.org/10.1016/j.foodres.2020.110077

Perini, M. A., Sin, I. N., Reyes Jara, A. M., Gómez Lobato, M. E., Civello, P. M., & Martínez, G. A. (2017). Hot water treatments performed in the base of the broccoli stem reduce postharvest senescence of broccoli (Brassica oleracea L. Var italic) heads stored at 20 °C. LWT, 77, 314-322. https://doi.org/10.1016/j.lwt.2016.11.066

Razaghi, A., Karthikeyan, O. P., Hao, H. T. N., & Heimann, K. (2016). Hydrolysis treatments of fruit and vegetable waste for production of biofuel precursors. Bioresource Technology, 217, 100-103. https://doi.org/10.1016/j.biortech.2016.03.041

Rivera-Martin, A., Broadley, M. R., & Poblaciones, M. J. (2020). Soil and foliar zinc application to biofortify broccoli (Brassica oleracea var. italica L.): Effects on the zinc concentration and bioavailability. Plant, Soil and Environment, 66(3), 113-118. https://doi.org/10.17221/14/2020-PSE

Rybarczyk-Plonska, A., Hagen, S. F., Borge, G. I. A., Bengtsson, G. B., Hansen, M. K., & Wold, A. B. (2016). Glucosinolates in broccoli (Brassica oleracea L. var. italica) as affected by postharvest temperature and radiation treatments. Postharvest Biology and Technology, 116, 16-25. https://doi.org/10.1016/j.postharvbio.2015.12.010

Serrano, M., Martinez-Romero, D., Guillén, F., Castillo, S., & Valero, D. (2006). Maintenance of broccoli quality and functional properties during cold storage as affected by modified atmosphere packaging. Postharvest Biology and Technology, 39(1), 61-68. https://doi.org/10.1016/j.postharvbio.2005.08.004

Shokri, S., Jegasothy, H., Augustin, M. A., & Terefe, N. S. (2021). Thermosonication for the production of sulforaphane rich broccoli ingredients. Biomolecules, 11(2), 321. https://doi.org/10.3390/biom11020321

Si, Y. Z., Gao, J., Li, H. X., Zhu, Y. Q., Luo, F. Y., & Deng, L. M. (2017). Effect of Packaging Film Permeability on the Quality of Postharvest Broccoli during Cold Storage. Modern Food Science and Technology, 33(7). https://doi.org/10.13982/j.mfst.1673-9078.2017.7.027

Soares, A., Carrascosa, C., & Raposo, A. (2017). Influence of Different Cooking Methods on the Concentration of Glucosinolates and Vitamin C in Broccoli. Food and Bioprocess Technology, 10(8), 1387-1411. https://doi.org/10.1007/s11947-017-1930-3

Sohail, M., Wills, R. B. H., Bowyer, M. C., & Pristijono, P. (2021). Multiple amino acids inhibit postharvest senescence of broccoli. Horticulturae, 7(4), 71. https://doi.org/10.3390/horticulturae7040071

Sun, S. J., Xie, X. L., Li, W. X., Wang, L. J., & Zhang, S. J. (2013). Effects of radix sophorae subprostratae, myristica fragrans and its complex extract on the fresh-keeping of broccoli. Modern Food Science and Technology, 29(2). https://caod.oriprobe.com/articles/31717115/Effects_of_Radix_Sophorae_Subprostratae__Myristica.htm

Supapvanich, S., Anan, W., & Chimsonthorn, V. (2019). Efficiency of combinative salicylic acid and chitosan preharvest-treatment on antioxidant and phytochemicals of ready to eat daikon sprouts during storage. Food Chemistry, 284, 8-15. https://doi.org/10.1016/j.foodchem.2019.01.100

Tian, M., Xu, X., Hu, H., Liu, Y., & Pan, S. (2017). Optimisation of enzymatic production of sulforaphane in broccoli sprouts and their total antioxidant activity at different growth and storage days. Journal of Food Science and Technology, 54, 209-218. https://doi.org/10.1007/s13197-016-2452-0

Vallejo, F., Tomás-Barberán, F. A., & García-Viguera, C. (2003). Effect of climatic and sulphur fertilisation conditions, on phenolic compounds and vitamin C, in the inflorescences of eight broccoli cultivars. European Food Research and Technology, 216, 395-401. https://doi.org/10.1007/s00217-003-0664-9

van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84, 523-538. https://doi.org/10.1007/s11192-009-0146-3

Wang, G. C., Farnham, M., & Jeffery, E. H. (2012). Impact of thermal processing on sulforaphane yield from Broccoli (Brassica oleracea L. ssp. italica). Journal of Agricultural and Food Chemistry, 60(27), 6743-6748. https://doi.org/10.1021/jf2050284

Wang, H. W., Makino, Y., Inoue, J., Maejima, K., Funayama-Noguchi, S., Yamada, T., & Noguchi, K. (2017). Influence of a modified atmosphere on the induction and activity of respiratory enzymes in broccoli florets during the early stage of postharvest storage. Journal of Agricultural and Food Chemistry, 65(39), 8538-8543. https://doi.org/10.1021/acs.jafc.7b02318

Wang, L., Wang, F., Zhang, Y., Ma, Y., Guo, Y., & Zhang, X. (2020). Enhancing the ascorbate–glutathione cycle reduced fermentation by increasing NAD+ levels during broccoli head storage under controlled atmosphere. Postharvest Biology and Technology, 165, 111169. https://doi.org/10.1016/j.postharvbio.2020.111169

Wojciechowska, R., Hanus-Fajerska, E. J., Kołton, A., Kamińska, I., Grabowska, A., & Kunicki, E. (2013). The effect of seedling chilling on glutathione content, catalase and peroxidase activity in Brassica oleracea L. var. italic. Acta Societatis Botanicorum Poloniae, 82(3). https://doi.org/10.5586/asbp.2013.020

Wu, X., Conkle, J. L., & Gan, J. (2012). Multi-residue determination of pharmaceutical and personal care products in vegetables. Journal of Chromatography A, 1254, 78-86. https://doi.org/10.1016/j.chroma.2012.07.041

Xu, F., Wang, H., Tang, Y., Dong, S., Qiao, X., Chen, X., & Zheng, Y. (2016). Effect of 1-methylcyclopropene on senescence and sugar metabolism in harvested broccoli florets. Postharvest Biology and Technology, 116, 45-49. https://doi.org/10.1016/j.postharvbio.2016.01.004

Xu, Y., Xiao, Y., Lagnika, C., Song, J., Li, D., Liu, C., Jiang, N., Zhang, M., & Duan, X. (2020). A comparative study of drying methods on physical characteristics, nutritional properties and antioxidant capacity of broccoli. Drying Technology, 38(10), 1378-1388. https://doi.org/10.1080/07373937.2019.1656642

Yanaka, A. (2017). Daily intake of sulforaphane-rich broccoli sprouts normalizes bowel habits in healthy human subjects. FASEB Journal, 31(1). https://doi.org/10.1096/fasebj.31.1_supplement.972.20

Yilmaz, E., & Bagci, P. O. (2019). Ultrafiltration of Broccoli Juice Using Polyethersulfone Membrane: Fouling Analysis and Evaluation of the Juice Quality. Food and Bioprocess Technology, 12, 1273-1283. https://doi.org/10.1007/s11947-019-02292-0

Yilmaz, M. S., Şakiyan, Ö., Barutcu Mazi, I., & Mazi, B. G. (2019). Phenolic content and some physical properties of dried broccoli as affected by drying method. Food Science and Technology International, 25(1). https://doi.org/10.1177/1082013218797527

Zhang, J., Yan, X., & Chen, Y. (2018). Pressed vegetable candy and preparation method thereof (Patent No. CN107616290A). https://bit.ly/3BYGsUa

Zhao, S. (2018). Great-healthy meal replacement food capable of reducing weight (Patent No. 107997149A).

Zhong, X., Siddiq, M., Sogi, D. S., Harte, B., Dolan, K. D., & Almenar, E. (2017). Effect of microwave steamable bag design on the preservation of ascorbic acid and antioxidant capacity and on the physical properties of cooked frozen vegetables: A case study on broccoli (Brassica oleracea). LWT, 83, 165-171. https://doi.org/10.1016/j.lwt.2017.05.018

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

148 | 55




 

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.