Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio

Efecto de fitasas en la dieta de porcinos sobre el rendimiento productivo: metaanálisis

Universidad Central del Ecuador
Universidad Central de Ecuador
actividad enzimática nutrición alimentación enzimas fósforo periodo de crecimiento lechones

Resumen

La alimentación es uno de los rubros más importantes en la producción porcina. Las fuentes de fósforo, proteína y energía representan los ingredientes más costosos del alimento. Las fitasas son enzimas que se han usado desde hace muchos años para aprovechar mejor el fósforo vegetal y reducir costos. Si bien se han generado muchas investigaciones, con distintas metodologías y resultados, su sistematización ha sido limitada. Por consiguiente, el objetivo de este trabajo fue evaluar el efecto de la inclusión de fitasas sobre el rendimiento productivo en porcinos. Se determinó tamaño de efecto, heterogeneidad, metaregresiones y sesgo de publicación. Los cerdos tratados con fitasas ganaron 25,17 g (p < 0.05) más peso al día frente al control. Los lechones pueden ganar hasta 39,89 g (p < 0.05). Los cerdos tratados con fitasas consumieron mayor cantidad de alimento 23,44 g y 28,61 g (p < 0.05) más al día que el control en el análisis general y en lechones, respectivamente. La proteína cruda, la energía metabolizable, el calcio y fósforo total, la duración y el nivel de fitasas en la dieta afectan el rendimiento (p < 0.05). No se encontró sesgo de publicación. En conclusión, la inclusión de fitasas favorece la ganancia de peso y el consumo de alimento en cerdos en general y en lechones, no así en cerdos en crecimiento-finalización. Se debe tener en cuenta el efecto de otros nutrientes al momento de la formulación, así como la duración y el nivel (dosis) de fitasas.  

Guachamín-Guachamín , R. A., & Quisirumbay-Gaibor, J. R. (2024). Efecto de fitasas en la dieta de porcinos sobre el rendimiento productivo: metaanálisis . Ciencia Y Tecnología Agropecuaria, 25(1). https://doi.org/10.21930/rcta.vol25_num1_art:3362

Adeola, O., Olukosi, O. A., Jendza, J. A., Dilger, R. N., & Bedford, M. R. (2006). Response of growing pigs to Peniophora lycii-and Escherichia coli-derived phytases or varying ratios of calcium to total phosphorus. Animal Science, 82(5), 637-644.

Aron, D., & Hays, V. (2004). How many pigs? Statistical power considerations in swine nutrition experiments. Journal of Animal Science, 82(13), 245-254.

Arredondo, M. A., Casas, G. A., & Stein, H. H. (2019). Increasing levels of microbial phytase increases the digestibility of energy and minerals in diets fed to pigs. Animal Feed Science and Technology, 248, 27-36.

Atakora, J. K., Moehn, S., Sands, J. S., & Ball, R. O. (2011). Effects of dietary crude protein and phytase–xylanase supplementation of wheat grain based diets on energy metabolism and enteric methane in growing finishing pigs. Animal feed science and technology(166), 422-429.

Bax, L. (2016). MIX 2.0 - Professional software for meta-analysis in Excel. Version 2.0.1.5. BiostatXL.

Bedford, M. R., & Cowieson , A. J. (2020). Matrix values for exogenous enzymes and their application in the real world. Journal of Applied Poultry Research, 29(1), 15-22.

Bernal, H., Colin, J., Morales, H., Meza, Z., Gutiérrez, E., Ruiz, E. A., & Valdivié, M. (2006). Sustitución de fosfato monocálcico por la enzima fitasa en dietas para cerdos de ceba. Revista Cubana de Ciencia Agrícola, 40(2), 193-200.

Biehl, R. R., & Baker, D. H. (1996). Efficacy of supplemental 1 α-hydroxycholecalciferol and microbial phytase for young pigs fed phosphorus-or amino acid-deficient corn-soybean meal diets. Journal of Animal Science, 74(12), 2960-2966.

Blavi, L., Muñoz, C. J., Broomhead, J. N., & Stein, H. H. (2019). Effects of a novel corn-expressed E. coli phytase on digestibility of calcium and phosphorous, growth performance, and bone ash in young growing pigs. Journal of animal science, 97(8), 3390-3398.

Boling, S. D., Webel, D. M., Mayromichalis, I., Parsons, C. M., & Baker, D. H. (2000). The effects of citric acid on phytate-phosphorus utilization in young chicks and pigs. Journal of Animal Science, 78(3), 682-689.

Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2011). Introduction to meta-analysis. John Wiley & Sons.

Bournazel , M., Lessire, M., Duclos, M. J., Magnin, M., Meme, N., Peyronnet, C., & Narcy, A. (2018). Effects of rapeseed meal fiber content on phosphorus and calcium digestibility in growing pigs fed diets without or with microbial phytase. Animal, 12(1), 34-42.

Broomhead, J. N., Lessard, P. A., Raab, R. M., & Lanahan, M. B. (2019). Effects of feeding corn-expressed phytase on the live performance, bone characteristics, and phosphorus digestibility of nursery pigs. Journal of Animal Science, 97(3), 1254-1261.

Catalá-López, F., & Tobías, A. (2014). Metaanálisis en ensayos clínicos aleatorizados, heterogeneidad e intervalos de predicción. Med Clin (Barc), 142(6), 270-274.

Cochran, W. G. (1954). The combination of estimates from different experiments. Biometrics, 10(1), 101-129.

Cowieson, A. J., Ruckebusch, J. P., Sorbara, J. O., Wilson, J. W., Guggenbuhl, P., Tanadini, L., & Roos, F. F. (2017). A systematic view on the effect of microbial phytase on ileal amino acid digestibility in pigs. Animal Feed Science and Technology, 231, 138-149.

Cromwell, G. L., Coffey, R. D., Parker, G. R., Monegue, H. J., & Randolph, J. H. (1995). Efficacy of a recombinant-derived phytase in improving the bioavailability of phosphorus in corn-soybean meal diets for pigs. Journal of animal science, 73(7), 2000-2008.

Cromwell, G. L., Stahly, T. S., Coffey, R. D., Monegue, H. J., & Randolph, J. H. (1993). Efficacy of phytase in improving the bioavailability of phosphorus in soybean meal and corn-soybean meal diets for pigs. Journal of animal science, 71(7), 1831-1840.

Dersjant-Li, Y., Hruby, M., Evans, C., & Greiner, R. (2019). A critical review of methods used to determine phosphorus and digestible amino acid matrices when using phytase in poultry and pig diets. Journal of Applied Animal Nutrition, 7(e2), 1-9.

Dersjant-Li, Y., Hruby, M., Evans, C., & Greiner, R. (2019). A critical review of methods used to determine phosphorus and digestible amino acid matrices when using phytase in poultry and pig diets. Journal of Applied Animal Nutrition, 7, e2.

Dersjant-Li, Y., Wealleans, A. L., Barnard, L. P., & Lane, S. (2017). Effect of increasing Buttiauxella phytase dose on nutrient digestibility and performance in weaned piglets fed corn or wheat based diets. Animal Feed Science and Technology, 234, 101-109.

Duffy, S. K., Kelly, A. K., Rajauria, G., Clarke, L. C., Gath, V., Monahan, F. J., & O´Doherty, J. V. (2018). The effect of 25‐hydroxyvitamin D3 and phytase inclusion on pig performance, bone parameters and pork quality in finisher pigs. Journal of Animal Physiology and Animal Nutrition, 102(5), 1296-1305.

Gentile, J. M., Roneker, K. R., Crowe, S. E., Pond, W. G., & Lei, X. G. (2003). Effectiveness of an experimental consensus phytase in improving dietary phytate-phosphorus utilization by weanling pigs. Journal of animal science, 81(11), 2751-2757.

Gerlinger, C., Oster, M., Reyer, H., Polley, C., Vollmar, B., Muráni, E., & Wolf, P. (2021). Effects of excessive or restricted phosphorus and calcium intake during early life on markers of bone architecture and composition in pigs. Journal of Animal Physiology and Animal Nutrition, 105, 52-62.

Higgins, J. P., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta‐analysis. Statistics in medicine, 21(11), 1539-1558.

Hill, B. E., Sutton, A. L., & Richert, B. T. (2009). Effects of low-phytic acid corn, low-phytic acid soybean meal, and phytase on nutrient digestibility and excretion in growing pigs. Journal of animal science, 87(4), 1518-1527.

Holloway, C. L., Boyd, R. D., Koehler, D., Gould, S. A., Li, Q., & Patience, J. F. (2019). The impact of “super-dosing” phytase in pig diets on growth performance during the nursery and grow-out periods. Translational Animal Science, 3(1), 419-428.

Humer, E., Schwarz, C., & Schedle, K. (2015). Phytate in pig and poultry nutrition. Journal of Animal Physiology and Animal Nutrition, 99(4), 605-625.

James, B. W., Tokach, M. D., Goodband, R. D., Nelssen, J. L., Dritz, S. S., & Lynch, G. L. (2008). Effect of phytase dosage and source on growth performance and bone development of nursery pigs. The Professional Animal Scientist, 24(1), 88-94.

Jang, Y. D., Wilcock, P., Boyd, R. D., & Lindemann, M. D. (2017). Effect of combined xylanase and phytase on growth performance, apparent total tract digestibility, and carcass characteristics in growing pigs fed corn-based diets containing high-fiber coproducts. Journal of Animal Science, 95(9), 4005-4017.

Jendza, J. A., Dilger , R. N., Adedokun, S. A., Sands, J. S., & Adeola, O. (2005). Escherichia coli phytase improves growth performance of starter, grower, and finisher pigs fed phosphorus-deficient diets. Journal of animal science, 83(8), 1882-1889.

Jha, R., & Berrocoso, J. F. (2016). Dietary fiber and protein fermentation in the intestine of swine and their interactive effects on gut health and on the environment: A review. Animal Feed Science and Technology, 212, 18-26.

Jolliff, J. S., & Mahan, D. C. (2012). Effect of dietary inulin and phytase on mineral digestibility and tissue retention in weanling and growing swine. Journal of animal science, 90(9), 3012-3022.

Kies, A. K., Kemme, P. A., Sebek, L. B., Van Diepen, J. T., & Jongbloed, A. W. (2006). Effect of graded doses and a high dose of microbial phytase on the digestibility of various minerals in weaner pigs. Journal of Animal Science, 84(5), 1169-1175.

Lautrou, M., Narcy, A., Dourmad, J. Y., Pomar, C., Schmidely, P., & Montminy, M. P. (2021). Dietary phosphorus and calcium utilization in growing pigs: requirements and improvements. Frontiers in Veterinary Science, 8, 734365.

Lautrou, M., Pomar, C., Dourmad, J. Y., Narcy, A., Schmidely, P., & Létourneau-Montminy, M. P. (2020). Phosphorus and calcium requirements for bone mineralisation of growing pigs predicted by mechanistic modelling. animal, 14(S2), s313-s322.

Li, Q., & Patience, J. F. (2017). Factors involved in the regulation of feed and energy intake of pigs. Animal Feed Science and Technology, 233, 22-33.

Misiura, M. M., Filipe, J. A., Walk, C. L., & Kyriazakis, I. (2020). How do pigs deal with dietary phosphorus deficiency? British Journal of Nutrition, 124(3), 256-272.

Murry, A. C., Lewis, R. D., & Amos, H. E. (1997). The effect of microbial phytase in a pearl millet-soybean meal diet on apparent digestibility and retention of nutrients, serum mineral concentration, and bone mineral density of nursery pigs. Journal of Animal Science, 75(5), 1284-1291.

National Research Council. (2012). Nutrient requirements of swine (Eleventh edition ed.). Washington, DC: National Academies Press.

Nortey, T. N., Patience, J. F., Simmins, P. H., Trottier, N. L., & Zijlstra, R. T. (2007). Effects of individual or combined xylanase and phytase supplementation on energy, amino acid, and phosphorus digestibility and growth performance of grower pigs fed wheat-based diets containing wheat millrun. Journal of animal science, 85(6), 1432-1443.

Olukosi, O. A., Sands, J. S., & Adeola, O. (2007). Supplementation of carbohydrases or phytase individually or in combination to diets for weanling and growing-finishing pigs. Journal of animal science, 85(7), 1702-1711.

Omogbenigun, F. O., Nyachoti, C. M., & Slominski, B. A. (2003). The effect of supplementing microbial phytase and organic acids to a corn-soybean based diet fed to early-weaned pigs. Journal of Animal Science, 81(7), 1806-1813.

Peter, C. M., Parr, T. M., Parr, E. N., Webel, D. M., & Baker, D. H. (2001). The effects of phytase on growth performance, carcass characteristics, and bone mineralization of late-finishing pigs fed maize–soyabean meal diets containing no supplemental phosphorus, zinc, copper and manganese. Animal Feed Science and Technology, 94(3-4), 199-205.

Rosenfelder-Kuon, P., Siegert, W., & Rodehutscord, M. (2020). Effect of microbial phytase supplementation on P digestibility in pigs: a meta-analysis. Archives of animal nutrition, 74(1), 1-18.

Rostagno, H. S., Texeira Albino, L. F., Hannas, M. I., Lopes Donzele, J., Sakomura, N., Perazzo, F. G., . . . de Oliveira Brito, C. (2017). Tablas Brasileñas para Aves y Cerdos. (Cuarta edición ed.). Viçosa: Universidad Federal de Viçosa.

Sands, J. S., & Kay, R. M. (2007). Phyzyme XP phytase improves growth performance and nutrient utilization in wheat-based diets fed to weaned pigs. Livestock Science, 109(1-3), 264-267.

Sauvant, D., Schmidely, P., Daudin, J. J., & St-Pierre, N. R. (2008). Meta-analyses of experimental data in animal nutrition. Animal, 2(8), 1203-1214.

Selle, P. H., Cowieson, A. J., & Ravindran, V. (2009). Consequences of calcium interactions with phytate and phytase for poultry and pigs. Livestock science, 124(1-3), 126-141.

She, Y., Liu, Y., González-Vega, J. C., & Stein, H. H. (2017). Effects of graded levels of an Escherichia coli phytase on growth performance, apparent total tract digestibility of phosphorus, and on bone parameters of weanling pigs fed phosphorus-deficient corn-soybean meal based diets. Animal

Feed Science and Technology, 232, 102-109.

She, Y., Sparks, J. C., & Stein, H. H. (2018). Effects of increasing concentrations of an Escherichia coli phytase on the apparent ileal digestibility of amino acids and the apparent total tract digestibility of energy and nutrients in corn-soybean meal diets fed to growing pigs. Journal of animal science, 96(7), 2804-2816.

van Milgen, J., & Dourmad, J. Y. (2015). Concept and application of ideal protein for pigs. Journal of Animal Science and Biotechnology, 6(1), 1-11.

Varley, P. F., Flynn, B., Callan, J. J., & O´doherty, J. V. (2011). Effect of phytase level in a low phosphorus diet on performance and bone development in weaner pigs and the subsequent effect on finisher pig bone development. Livestock Science, 138(1-3), 152-158.

Varley, P. F., Lynch, P. B., Callan, J. J., & O´Doherty, J. V. (2010). Effect of phytase concentration in a low phosphorus weaner pig diet and its subsequent effect on bone development in the finished pig. Livestock Science, 134(1-3), 218-220.

Woyengo, T. A., Sands, J. S., Guenter, W., & Nyachoti, C. M. (2008). Nutrient digestibility and performance responses of growing pigs fed phytase-and xylanase-supplemented wheat-based diets. Journal of animal science, 86(4), 848-857.

Zhai, H., Adeola, O., & Liu, J. (2022). Phosphorus nutrition of growing pigs. Animal Nutrition, 9, 127-137. doi:https://doi.org/10.1016/j.aninu.2022.01.010

Zhai, H., Bergstrom, J. R., Zhang, J., Dong, W., Wang, Z., Stamatopoulos, K., & Cowieson, A. J. (2022). Use of fixed calcium to phosphorus ratios in experimental diets may create bias in phytase efficacy responses in swine. Translational Animal Science, 6(3), txac124.

Zouaoui, M., Létourneau-Montminy, M. P., & Guay, F. (2018). Effect of phytase on amino acid digestibility in pig: a meta-analysis. Animal Feed Science and Technology, 238, 18-28.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

1497 | 411




 

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.