Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio

Detección de malas hierbas en cultivos de Capsicum Annuum L. mediante fotogrametría y algoritmos de aprendizaje profundo

Universidad Autónoma del Estado de Hidalgo
Universidad Politécnica de Tulancingo
Universidad Politécnica de Tulancingo
Universidad Autónoma del Estado de Hidalgo
fotografía aérea cultivos de campo reconocimiento de patrones arquitectura ResNet vehículos aéreos no tripulados plagas

Resumen

La Cuscuta spp. es una planta parásita que causa pérdidas estimadas en el 50 % del rendimiento de una amplia variedad de cultivos agrícolas, incluidos verduras, forrajes y árboles.  En la búsqueda de alternativas para resolver este problema, los pequeños agricultores están explorando la aplicación de nuevas tecnologías en la producción de alimentos. Este trabajo presenta un modelo de clasificación de Cuscuta spp. con teledetección mediante imágenes aéreas recolectadas por UAV con las que se generan ortofotos donde se señalan las zonas infestadas. El modelo propuesto segmenta el color amarillento característico del tallo de Cuscuta spp. en el espacio de color HSV para llevar a cabo el proceso de entrenamiento de una Red Neuronal Convolucional (CNN) profunda. En los experimentos se incluyeron imágenes RGB de un cultivo de pimiento picante (Capsicum annuum Linnaeus) con presencia de Cuscuta spp. Además, realizamos la validación cruzada de 5 iteraciones del modelo con diferentes conjuntos de datos al emplear imágenes recolectadas durante tres semanas consecutivas para identificar el crecimiento de la zona afectada por la maleza. La arquitectura ResNet, de acuerdo con las métricas empleadas, resultó ser el mejor modelo para clasificar Cuscuta spp y no Cuscuta. El método propuesto permite a los pequeños productores identificar y localizar la maleza en las primeras fases de crecimiento para facilitar las labores de eliminación y mitigación.

Cornejo-Velázquez, E., Camacho-Bello, C. J., Duarte-Rangel, A. ., & Clavel-Maqueda, M. (2024). Detección de malas hierbas en cultivos de Capsicum Annuum L. mediante fotogrametría y algoritmos de aprendizaje profundo. Ciencia Y Tecnología Agropecuaria, 25(3). https://doi.org/10.21930/rcta.vol25_num3_art:3602

Ahmadi, K., Omidi, H., Amini Dehaghi, M., & Naghdi Badi, H. (2019). A Review on the Botanical, Phytochemical and Pharmacological Characteristics of Kelussia odoratissima Mozaff. Journal of Medicinal Plants, 18(72), 30-45. https://doi.org/10.29252/jmp.4.72.S12.30

Ali, Z. A., Yang, C., Israr, A., & Zhu, Q. (2023). A Comprehensive Review of Scab Disease Detection on Rosaceae Family Fruits via UAV Imagery. Drones, 7(2), 97. https://doi.org/10.3390/drones7020097

Aly, R., & Dubey, N. (2014). Weed Management for Parasitic Weeds. In B. Chauhan & G. Mahajan (Eds.), Recent Advances in Weed Management. Springer. https://doi.org/10.1007/978-1-4939-1019-9_14

Bajwa, A. A., Farooq, M., Al-Sadi, A. M., Nawaz, A., Jabran, K., & Siddique, K. H. (2020). Impact of climate change on biology and management of wheat pests. Crop Protection, 137, 105304. https://doi.org/10.1016/j.cropro.2020.105304

Blanco-Valdes, Y., Leyva-Galán, Á., & Castro-Lizazo, I. (2018). Determination of the critical period of weeds competition in pepper crop (Capsicum annum, L.). Cultivos Tropicales, 39(3), 18-24. https://ediciones.inca.edu.cu/index.php/ediciones/article/download/1461/pdf/7291

Burkart, A., Hecht, V. L., Kraska, T., & Rascher, U. (2018). Phenological analysis of unmanned aerial vehicle-based time series of barley imagery with high temporal resolution. Precision Agriculture, 19, 134-146. https://doi.org/10.1007/s11119-017-9504-y

Canicattì, M., & Vallone, M. (2024). Drones in Vegetable Crops: A Systematic Literature Review. Smart Agricultural Technology, 100396. https://doi.org/10.1016/j.atech.2024.100396

Chollet, F. (2015). Keras: Deep Learning for humans. https://keras.io

Chollet, F. (2017). Xception: Deep learning with depth wise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1251-1258). IEEE. https://doi.org/10.1109/CVPR.2017.195

Cornejo-Velazquez, E., & Clavel-Maqueda, M. (2024). Set of images of chile crop areas collected with flight plans [Data set]. Zenodo. https://doi.org/10.5281/zenodo.11123207

Coulombe, J., Brown, P., White, S., Xu, C., & Koech, R. (2018, August). Detection of crop water status using UAV mounted sensor. In XXX International Horticultural Congress IHC2018: VII Conference on Landscape and Urban Horticulture, IV Conference, 1279, 271-278.

Cournapeau, D. (2007). Scikit Learn: Machine Learning in Python. https://scikit-learn.org/stable/

Gutiérrez-Lazcano, L., Camacho-Bello, C. J., Cornejo-Velazquez, E., Arroyo-Núñez, J. H., & Clavel-Maqueda, M. (2022). Cuscuta spp. Segmentation Based on Unmanned Aerial Vehicles (UAVs) and Orthomasaics Using a U-Net Xception-Style Model. Remote Sensing, 14(17), 4315. https://doi.org/10.3390/rs14174315

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv. https://doi.org/10.48550/arXiv.1704.04861

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700-4708). IEEE. https://doi.org/10.1109/CVPR.2017.243

Iqbal, M., Hussain, M., Abid, A., Ali, M., Nawaz, R., Waqar, M., Ashgar, M., & Iqbal, Z. (2014). A review: Cuscuta (Cuscuta planifora) major weed threat in Punjab–Pakistan. International Journal of Advanced Research in Biological Sciences, 4, 42-46. https://ijarbs.com/pdfcopy/july2014/ijarbs6.pdf

Ishengoma, F. S., Rai, I. A., & Said, R. N. (2021). Identification of maize leaves infected by fall armyworms using UAV-based imagery and convolutional neural networks. Computers and Electronics in Agriculture, 184, 106124. https://doi.org/10.1016/j.compag.2021.106124

Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2020). A survey of the recent architectures of deep convolutional neural networks. Artificial intelligence review, 53, 5455-5516. https://doi.org/10.1007/s10462-020-09825-6

Krienke, B., Ferguson, R. B., Schlemmer, M., Holland, K., Marx, D., & Eskridge, K. (2017). Using an unmanned aerial vehicle to evaluate nitrogen variability and height effect with an active crop canopy sensor. Precision Agriculture, 18, 900-915. https://doi.org/10.1007/s11119-017-9534-5

Le, Q. V., Tennakoon, K. U., Metali, F., Lim, L. B., & Bolin, J. F. (2015). Impact of Cuscuta australis infection on the photosynthesis of the invasive host, Mikania micrantha, under drought condition. Weed Biology and Management, 15(4), 138-146. https://doi.org/10.1111/wbm.12077

Martínez, J., Egea, G., Agüera, J., & Pérez-Ruiz, M. (2017). A cost-effective canopy temperature measurement system for precision agriculture: A case study on sugar beet. Precision Agriculture, 18, 95-110. https://doi.org/10.1007/s11119-016-9470-9

Mishra, J. S. (2009). Biology and management of Cuscuta species. Indian Journal of Weed Science, 41(1 & 2), 1-11. https://www.isws.org.in/IJWSn/File/2009_41_Issue-1&2_1-11.pdf

OCV. (2023). OpenCV – Open Computer Vision Library. https://opencv.org

ODM. (2023). WebODM - OpenDroneMap. https://www.opendronemap.org/webodm/

Oldeland, J., Große-Stoltenberg, A., Naftal, L., & Strohbach, B. J. (2017). The potential of UAV derived image features for discriminating savannah tree species. In The Roles of Remote Sensing in Nature Conservation: A Practical Guide and Case Studies (pp. 183-201). Springer. https://doi.org/10.1007/978-3-319-64332-8_10

Pandey, A., & Jain, K. (2022). An intelligent system for crop identification and classification from UAV images using conjugated dense convolutional neural network. Computers and Electronics in Agriculture, 192, 106543. https://doi.org/10.1016/j.compag.2021.106543

Puteh, S., Rodzali, N. F. M., Abdul Majeed, A. P. P., Khairuddin, I. M., Ibrahim, Z. Z., & Razman, M. A. M. (2021). Classification of Capsicum frutescens health condition through features extraction from NDVI values using image processing. In RiTA 2020: Proceedings of the 8th International Conference on Robot Intelligence Technology and Applications. Springer Singapore. https://doi.org/10.1007/978-981-16-4803-8_41

Qiao, L., Tang, W., Gao, D., Zhao, R., An, L., Li, M., Sun, H., & Song, D. (2022). UAV-based chlorophyll content estimation by evaluating vegetation index responses under different crop coverages. Computers and Electronics in Agriculture, 196, 106775. https://doi.org/10.1016/j.compag.2022.106775

Sanz, D., Valente, J., del Cerro, J., Colorado, J., & Barrientos, A. (2015). Safe operation of mini UAVs: a review of regulation and best practices. Advanced Robotics, 29(19), 1221–1233. https://doi.org/10.1080/01691864.2015.1051111

SIAP. (2021). Panorama agroalimentario. Secretaría de Agricultura de México.

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv. https://doi.org/10.48550/arXiv.1409.1556

Smith, A. R. (1978). Color gamut transform pairs. ACM Siggraph Computer Graphics, 12(3), 12-19. https://doi.org/10.1145/965139.807361

Sosa-Herrera, J. A., Vallejo-Pérez, M. R., Álvarez-Jarquín, N., Cid-García, N. M., & López-Araujo, D. J. (2019). Geographic object-based analysis of airborne multispectral images for health assessment of Capsicum annuum L. crops. Sensors, 19(21), 4817. https://doi.org/10.3390/s19214817

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2818-2826). IEEE. https://doi.org/10.1109/CVPR.2016.308

Team, G. B. (2015). TensorFlow. https://www.tensorflow.org/

Tetila, E. C., Machado, B. B., Astolfi, G., de Souza Belete, N. A., Amorim, W. P., Roel, A. R., & Pistori, H. (2020). Detection and classification of soybean pests using deep learning with UAV images. Computers and Electronics in Agriculture, 179, 105836. https://doi.org/10.1016/j.compag.2020.105836

West, J. S., Canning, G. G., Perryman, S. A., & King, K. (2017). Novel technologies for the detection of Fusarium head blight disease and airborne inoculum. Tropical Plant Pathology, 42, 203-209. https://doi.org/10.1007/s40858-017-0138-4

Winston, R. L., Schwarzländer, M., Hinz, H. L., Day, M. D., Cock, M. J., & Julien, M. H. (2014). Biological control of weeds: a world catalogue of agents and their target weeds (5th ed). USDA Forest Service, Forest Health Technology Enterprise Team. http://www.ibiocontrol.org/catalog/JulienCatalogueFHTET_2014_04.pdf

Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1492-1500). IEEE. https://doi.org/10.1109/CVPR.2017.634

Yee-Rendon, A., Torres-Pacheco, I., Trujillo-Lopez, A. S., Romero-Bringas, K. P., & Millan-Almaraz, J. R. (2021). Analysis of New RGB Vegetation Indices for PHYVV and TMV Identification in Jalapeño Pepper (Capsicum annuum) leaves using CNNs-based model. Plants, 10(10), 1977. https://doi.org/10.3390/plants10101977

Zhang, L., Han, W., Niu, Y., Chavez, J. L., Shao, G., & Zhang, H. (2021). Evaluating the sensitivity of water stressed maize chlorophyll and structure based on UAV derived vegetation indices. Computers and Electronics in Agriculture, 185, 106174. https://doi.org/10.1016/j.compag.2021.106174

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

113 | 7




 

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.