Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio

Efecto de la desinfección, el desarrollo foliar y las fitohormonas en la inducción de callos de Simarouba amara Aubl.

Universidad Nacional de Ucayali
Universidad Nacional Intercultural de la Amazonia
Universidad Nacional Intercultural de la Amazonía
Universidad Nacional de Ucayali
Universidade Federal do ABC
Universidade Federal do ABC
Universidad Nacional Intercultural de la Amazonía
Universidad Nacional de Ucayali
cultivo in vitro hoja desinfección callogenésis auxina citoquinina Simarouba

Resumen

Disinfection and callus induction in forest species is essential to improve genetic production. Although multiple methods exist, their application in forest plants requires further research. Therefore, this study focused on the effect of disinfection, leaf development and phytohormones on callus induction in Simarouba amara. The study was structured in two experiments. In the first experiment, the efficacy of leaflet disinfection was evaluated using a completely randomized design with three sodium hypochlorite treatments (0 %, 0.25 % and 0.5 %). The second experiment, focused on callus induction, was developed under a 3 x 6 factorial design, which included three stages of leaf development (young, intermediate and mature) and six combinations of phytohormones (BAP, TDZ, 2,4-D, BAP+TDZ, BAP+2,4-D, TDZ+2,4-D, all at 1 mg/L). The main results showed that 0.25 % sodium hypochlorite achieved 88.9 % asepsis, with a lower percentage of oxidation (17 %). It was observed that, combinations of BAP+2,4-D and TDZ+2,4-D promoted higher callus formation, increased callus area and fresh and dry matter production, especially in segments of intermediate leaf development stage. This study highlights the importance of adjusting disinfectant and phytohormones according to leaf development stage for successful callus induction in Simarouba amara.

Mori-Vásquez, J. A., Panduro Tenazoa, N. M., Muñoz Fernandez, V. J., Herrera-Saavedra, M. A., de Setta, N., de Oliveira Ferreira, G., Avalos-Díaz, A. G., & Gonzales-Alvarado, A. C. . (2024). Efecto de la desinfección, el desarrollo foliar y las fitohormonas en la inducción de callos de Simarouba amara Aubl. Ciencia Y Tecnología Agropecuaria, 25(3). https://doi.org/10.21930/rcta.vol25_num3_art:3662

Aguilera-Arango, G. A., Puentes-Díaz, C. L., & Rodríguez-Henao, E. (2021). Disinfection methods for the in vitro establishment of two varieties of cassava for agroindustrial use. Revista de Investigación e Innovación Agropecuaria y de Recursos Naturales, 8(3), 21-30.

https://doi.org/10.53287/kdux7546xv19l

Arbeláez, L. M., Montoya, J. L., & Saavedra, S. A. R. (2016). Assessment protocols for the establishment and disinfection in vitro meristem of Banana Musa spp. Vitae, 23(1), 391-395.

Argentel, L. M., Fonseca, I. R., Garatuza, J. P., Yépez, E. G., & González, J. A. (2017). Effect of salinity on calli of wheat varieties during in vitro culture, Revista Mexicana de Ciencias Agrícolas, 8(3), 477-488. https://doi.org/10.29312/remexca.v8i3.25

Assareh, M. H., & Sardabi, H. (2005). Macropropagation and micropropagation of Ziziphus spina-christi. Pesquisa Agropecuária Brasileira, 40(5), 459-465.

https://doi.org/10.1590/s0100-204x2005000500006

Aublet, F. (1775). Histoire des plantes de la Guiane Françoise. Londres e Paris: Pierre-François Didot. Botanicus, 2, 860-861. http://www.botanicus.org/page/361614

Azofeifa-Delgado, Á. (2009). Problemas de oxidación y oscurecimiento de explantes cultivados in vitro. Agronomía Mesoamericana, 20(1), 153-175.

https://doi.org/10.15517/am.v20i1.4990

Bello-Bello, J. J., Martínez-Estrada, E., Caamal-Velázquez, J. H., & Morales-Ramos, V. (2016). Effect of LED light quality on in vitro shoot proliferation and growth of vanilla (Vanilla planifolia Andrews). African Journal of Biotechnology, 15(8), 272-277.

https://doi./10.5897/AJB2015.14662

Boyette, M. D., Ritchie, D. F., Carballo, S. J., Blankenship, S. M., & Sanders, D. C. (1993). Chlorination and postharvest disease control. HortTechnology, 3(4), 395-400.

https://doi.org/10.21273/HORTTECH.3.4.395

Bramhanapalli, M., Thogatabalija, L., & Gudipalli, P. (2017). Efficient in vitro plant regeneration from seedling-derived explants and genetic stability analysis of regenerated plants of Simarouba glauca DC. by RAPD and ISSR markers. In Vitro Cellular & Developmental Biology - Plant, 53(1), 50-63.

https://doi.org/10.1007/s11627-016-9795-0

Carbonell, X. R., Verdes, P. E., & Leporati, J. L. (2022). Preliminary evaluation of in vitro callogenesis and organogenesis Leptochloa crinita (Lag.) P. M. Peterson & N. Snow. Revista Colombiana de Biotecnología, 24(1), 19-26.

https://doi.org/10.15446/rev.colomb.biote.v24n1.99374

Chen, B., Li, J., Zhang, J., Fan, H., Wu, L., & Li, Q. (2016). Improvement of the tissue culture technique for Melaleuca alternifolia. Journal of Forestry Research, 27(6), 1265-1269.

https://doi.org/10.1007/s11676-016-0301-7

Chung, H. H., Chen, J. T., & Chang, W. C. (2007). Plant regeneration through direct somatic embryogenesis from leaf explants of Dendrobium. Biologia Plantarum, 51(2), 346-350.

https://doi.org/10.1007/s10535-007-0069-x

Corredor, E. Y., Imakawa, A. M., Da Silva, D., & Barbosa, P. T. (2022). In vitro callus induction from different explants of Senna alata (L.) Robx. (FABACEAE). Advances In Forestry Science Cuiabá, 9(1), 1653-1660. https://doi.org/10.34062/afs.v9i1.12928

Cruz, C. A. F., Paiva, H. N., & Guerrero, C. R. A. (2006). Efeito da adubação nitrogenada na produção de mudas de sete-cacas (Samanea inopinata (Harms) Ducke). Revista Árvore, 30(4), 537-546. https://doi.org/10.1590/S0100-67622006000400006

Da Silva, D., Imakawa, A. M., Souza, F. M., & Barbosa, P. T. (2018). Indução de calos friáveis em explantes foliares e segmentos nodais de pau-ferro (Caesalpinia ferrea). Revista de Ciências Agrárias, 41(4), 1044-1050. https://doi.org/10.19084/RCA17311

Devecchi, M. F., & Pirani, J. R. (2016). Flora of the cangas of the Serra dos Carajás, Pará, Brazil: Simaroubaceae. Rodriguésia, 67(5), 1471-1476.

https://doi.org/10.1590/2175-7860201667551

Dos Santos, M. R. A., Ferreira, M. D. G. R., Correia, A. D. O., & Da Rocha, J. F. (2010). In Vitro establishment and callogenesis in shoot tips of Peach Palm. Revista Caatinga, 23(1), 40-44. http://www.redalyc.org/articulo.oa?id=237117582007

Fehér, A. (2019). Callus, Dedifferentiation, Totipotency, Somatic Embryogenesis: What These Terms Mean in the Era of Molecular Plant Biology? Frontiers in Plant Science, 10, 536. https://doi.org/10.3389/fpls.2019.00536

Gammoudi, N., Nagaz, K., & Ferchichi, A. (2022). Establishment of optimized in vitro disinfection protocol of Pistacia vera L. explants mediated a computational approach: multilayer perceptron–multi−objective genetic algorithm. BMC Plant Biology, 22, 324.

https://doi.org/10.1186/s12870-022-03674-x

Gavilan, N. H., Furlan, F. C., Zorz, A. Z., De Oliveira L. S., Campos, W. F., & Brondani, G. E. (2018). Chemical sterilization of culture medium for in vitro multiplication of Cochlospermum regium. Ciência Rural, 48(9), e20170581.

https://doi.org/10.1590/0103-8478cr20170581

GBIF. (2023). GBIF Backbone Taxonomy. Checklist dataset Simarouba amara Aubl. https://doi.org/10.15468/39omei

Gomes-Copeland, K. K. P., Lédo, A. S., Juceni, P. D., Aparecida, G. A., & Fabrício, T. C. A. (2017). In vitro callogenesis of Poincianella pyramidalis (catingueira). Revista Brasileira de Farmacognosia, 27(4), 525-528. https://doi.org/10.1016/j.bjp.2016.12.005

Gonzales-Alvarado, A. C., Mori-Vasquez, J. A., Tuisima Coral, L. L., & Revilla-Chávez, J. M. (2022). Influencia de la desinfección, medios de cultivo y fitohormonas en el desarrollo morfogénico in vitro de germoplasma de Guazuma crinita Mart. Folia Amazónica, 31(1), 57-70. https://doi.org/10.24841/fa.v31i1.572

Gratão, P. L., Polle, A., Lea, P. J., & Azevedo, R. A. (2005). Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology, 32(6), 481-494.

https://doi.org/10.1071/FP05016

Gu, M., Li, Y., Jiang, H., Zhang, S., Que, Q., Chen, X., & Zhou, W. (2022). Efficient In Vitro Sterilization and Propagation from Stem Segment Explants of Cnidoscolus aconitifolius (Mill.) IM. Johnst, a Multipurpose Woody Plant. Plants, 11(15), 1937.

https://doi.org/10.3390/plants11151937

Gupta, S. D., & Jatothu, B. (2013). Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnology Repports, 7(3), 211-220. https://doi.org/10.1007/s11816-013-0277-0

Hadke, S. P., Deshmukh, A. G., Dudhare, M. S., & Vaidya, E. R. (2008). Callus induction in Simarouba glauca D.C. Asian Journal of Biological Sciences, 3(1) 1-4.

Hardesty, B. D., Dick, C. W., Kremer, A., Hubbell, S., & Bermingham, E. (2005). Spatial genetic structure of Simarouba amara Aubl. (Simaroubaceae), a dioecious, animal-dispersed Neotropical tree, on Barro Colorado Island, Panama. Heredity, 95(4), 290-297.

https://doi.org/10.1038/sj.hdy.6800714

Hasnain, A., Naqvi, S. A. H., Ayesha, S. I., Khalid, F., Ellahi, M., Iqbal, S., Hassan, M. Z., Abbas, A., Adamski, R., Markowska, D., Baazeem, A., Mustafa, G., Moustafa, M., Hasan, M. E., & Abdelhamid. M. M. A. (2022). Plants in vitro propagation with its applications in food, pharmaceuticals and cosmetic industries; current scenario and future approaches. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1009395

Hernández-Amasifuen, A. D., Cortez-Lázaro, A. A., Argüelles-Curaca, A., & Díaz-Pillasca, H. B. (2021). In vitro callogenesis of peach (Prunus persica L.) var. Huayco rojo from leaf explants. Ciencia y Tecnologia Agropecuaria, 23(1), e2032.

https://doi.org/10.21930/rcta.vol23_num1_art:2032

Hesami, M., Naderi, R., & Yoosefzadeh-Najafabadi, M. (2018). Optimizing sterilization conditions and growth regulator effects on in vitro shoot regeneration through direct organogenesis in Chenopodium quinoa. BioTechnologia, 99(1), 49-57.

https://doi.org/10.5114/bta.2018.73561

Hesami, M., Naderi, R., & Tohidfar, M. (2019). Modeling and Optimizing in vitro Sterilization of Chrysanthemum via Multilayer Perceptron-Non-dominated Sorting Genetic Algorithm-II (MLP-NSGAII). Frontiers in Plant Science, 10, 282.

https://doi.org/10.3389/fpls.2019.00282

Hill, A., De león, D., & Dervieux, C. (2022). Quillt: 'pkgdown' template for the r markdown ecosystem. https://github.com/rstudio/quillt,

https://pkgs.rstudio.com/quillt.2022

Hoffmann, L. T., Bittencourt, R., Grott, I. T., & Sperlich, C. L. (2022). In vitro germination of Raulinoa echinata R. S. Cowan (Rutaceae): seeds and zygotic embryos Ciência Florestal, Santa Maria, 32(3), 1187-1204.

https://doi.org/10.5902/1980509837874

Honda, H., Lui, C., & Kobayashi, T. (2001). Large-Scale Plant Micropropagation. Plant Cells, 72, 157-182. https://doi.org/10.1007/3-540-45302-4_6

Iiyama, C. M., & Cardoso, J. C. (2021). Micropropagation of Melaleuca alternifolia by shoot proliferation from apical segments. Trees, 35(5), 1497-1509.

https://doi.org/10.1007/s00468-021-02131-w

IUCN. 2023. The IUCN Red List of Threatened Species. Version 2021-3. https://www.iucnredlist.org

Jaskani, M. J., Abbas, H., Sultana, R., Khan, M. M., Qasim, M., & Khan. I. A. (2008). Effect of growth hormones on micropropagation of Vitis vinifera L. CV. perlette. Pakistan Journal of Botany, 40(1), 105-109.

http://142.54.178.187:9060/xmlui/handle/123456789/16978

Jones, B., Gunnerås, S.A., Petersson, S.V., Tarkowski, P., Graham, N., May, S., Dolezal, K., Sanberg, G. Ljung, K. (2010). Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. The Plant Cell, 22(9), 2956-2969.

https://doi.org/10.1105%2Ftpc.110.074856

Kareem, A., Radhakrishnan, D., Sondhi, Y., Aiyaz, M., Roy M. V., Sugimoto, K., & Prasad, K. (2016). De novo assembly of plant body plan: a step ahead of Deadpool. Regeneration, 3(4), 182-197. https://doi.org/10.1002/reg2.68

Kothari, S. L., Joshi, A., Kachhwaha, S., & Ochoa-Alejo, N. (2010). Chilli, peppers-A review on tissue culture and transgenesis. Biotechnology Advances, 28(1), 35-48.

https://doi.org/10.1016/j.biotechadv.2009.08.005.

Kumar, K. R., Singh, K. P., Jain, P. K., Raju, D. V. S., Kumar, P., Bhatia, R., & Panwar, S. (2018). Influence of growth regulators on callus induction and plant regeneration from anthers of Tagetes spp. Indian Journal of Agricultural Sciences, 88(6), 970-977.

Kumlay, A. M., & Ercisli, S. (2015). Callus induction, shoot proliferation and root regeneration of potato (Solanum tuberosum L.) stem node and leaf explants under long-day conditions. Biotechnology & Biotechnological Equipment, 29(6), 1075-1084.

https://doi.org/10.1080/13102818.2015.1077685

Lavanya, A. R., Muthukumar, M., Muthukrishnan, S., Kumaresan, V., Kumar, T. S., Rao, A. S., & Rao, M. V. (2016). In vitro micropropagation of Simarouba glauca DC. Indian Journal of Biotechnology, 15(1), 107-111.

http://nopr.niscpr.res.in/handle/123456789/34524

Lee, S., & Huang, W. (2014). Osmotic stress stimulates shoot organogenesis in callus of rice (Oryza sativa L.) via auxin signaling and carbohydrate metabolism regulation. Plant Growth Regulation, 73(2), 193-204. https://doi.org/10.1007/s10725-013-9880-x

Lima, E. M., Curcio, G. R., Bonnet, A., Uhlmann, A., & Palma, V. H. (2018). Crescimento inicial de espécies arbóreas nativas em solos degradados e com presença de plintita no Bioma Cerrado, Brasília - DF. Nativa, 6, 787-794.

http://dx.doi.org/10.31413/nativa.v6i0.6210

Liu, J., Feng, H., Ma, Y., Zhang, L., Han, H., & Huang, X. (2018). Effects of different plant hormones on callus induction and plant regeneration of miniature roses (Rosa hybrida L.). Horticulture International Journal, 2(4), 201-206.

https://doi.org/10.15406/hij.2018.02.00053

Mihaljević, I., Dugalić, K., Tomaš, V., Viljevac, M., Pranjić, A., Čmelik, Z., Puškar, B., & Jurković, Z. (2013). In vitro sterilization procedures for micropropagation of 'Oblačinska' sour cherry. Journal of Agricultural Sciences Belgrade, 58(2), 117-126.

https://doi.org/10.2298/JAS1302117M

Mc-Caughey-Espinoza, D., Ayala-Astorgo, G., García-Baldenegro, C., Buitimea-Cantúa, N., Buitimea-Cantúa, G., & Ochoa-Meza, A. (2020). In vitro germination and induction of callus and root in Bursera laxiflora S. Watson. Abanico Agroforestal, 2, 1-14.

http://dx.doi.org/10.37114/abaagrof/2020.4

Mc-Caughey-Espinoza, D., Reyes-Olivas, Á., Ayala-Astorga, G., Lugo-García, G., Ochoa-Meza, A., & Pacheco-Olvera, A. (2020). In vitro induction of callogenesis and organogenesis in explants of Krameria erecta Willd. Abanico Agroforestal, 2(1), 1-13.

http://dx.doi.org/10.37114/abaagrof/2020.5

Mehbub, H., Akter, A., Akter, M. A., Mandal, M. S. H., Hoque, M. A., Tuleja, M., & Mehraj, H. (2022). Tissue Culture in Ornamentals: Cultivation Factors, Propagation Techniques, and Its Application. Plants, 11(23), 3208.

https://doi.org/10.3390/plants11233208

Mohd Din, A. R. J., Ahmad, F. I., Wagiran, A., Samad, A. A., Rahmat, Z., & Sarmidi, M. R. (2016). Improvement of efficient in vitro regeneration potential of mature callus induced from Malaysian upland rice seed (Oryza sativa cv. Panderas). Saudi Journal of Biological Sciences, 23(1), S69-S77. https://doi.org/10.1016/j.sjbs.2015.10.022

Moraes, R. M., Cerdeira, A. L., & Lourenço. M. V. (2021). Using micropropagation to develop dedicinal plants into crops. Molecules, 26(6), 1752.

https://doi.org/10.3390/molecules26061752

Murashige, T. & Skoog, F. (1962) A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol Plant, 15(3), 473-497.

https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Naik, N., Rout, P., Umakanta, N., Verma, R. L., Katara, J. L., Sahoo, K. K., Singh, O. N., & Samantaray, S. (2017). Development of doubled haploids from an elite indica rice hybrid (BS6444G) using anther culture. Plant Cell, Tissue and Organ Culture, 128, 679-689.

https://doi.org/10.1007/s11240-016-1149-4

Payghamzadeh, K. Kazemitabar, S. K. (2011). In vitro Propagation of Walnut – A review. African Journal of Biotechnology, 10(3), 290-311. https://doi.org/10.5897/AJB10.324

Pompeu, G. B., Gratão, P, L., Vitorello, V. A., & Azevedo, R. A. (2008). Antioxidant isoenzyme responses to nickel-induced stress in tobacco cell suspension culture. Sciencia Agricola, 65(5), 548-552. https://doi.org/10.1590/S0103-90162008000500015

Purohit, S.D., Da Silva, T.J., & Habibi, N. (2011). Current approaches for cheaper and better micropropagation technologies. International Journal of Plant Developmental Biology, 5(1), 1-36.

Revilla-Chávez, J. M., Abanto-Rodríguez, C., Guerra, A. W. F., García, S. D., Guerra, A. H., Domínguez, T. G., & Carmo, I. L. G. (2021). Modelos alométricos para estimar el volumen de madera de Guazuma crinita en plantaciones forestales. Scientia Agropecuaria, 12(1), 25-31. http://dx.doi.org/10.17268/sci.agropecu.2021.003

Reynel, C., Pennington, T. D., Pennington, R. T., Flores, C., & Daza, A. (2004). Miradas botánicas y miradas forestales a los árboles y madera en la Amazonía peruana. Revista Peruana de Biología, 11(1), 113-114. https://doi.org/10.15381/rpb.v11i1.2443

Roberts, S., & Kolewe, M. (2010). Plant natural products from cultured multipotent cells. Nature Biotechnology, 28, 1175-1176. https://doi.org/10.1038/nbt1110-1175

Rodriguez, H., Geistlinger, J., Berlyn, G., Kahl, G., & Weising, K. (2000). Characterization of novel microsatellite loci isolated from the tropical dioecious tree Simarouba amara. Molecular Ecology, 9(4), 498-500.

https://doi.org/10.1046/j.1365-294x.2000.00871-7.x

Rodríguez, M. M., Latsague, M. I., Chacón, M. A., & Astorga, P. K. (2014). In vitro induction of callogenesis and indirect organogenesis from explants of cotyledon, hypocotyl and leaf in Ugni molinae. Bosque (Valdivia), 35(1), 111-118.

http://dx.doi.org/10.4067/S0717-92002014000100011

Ronquillo, M.G.L. (2005). Inducción de callogénesis in vitro a partir de láminas foliares de Sansevieria trifasciata. Thesis, Ing. Agronomo, Escuela Agrícola Panamericana, Carrera de Ciencia y Producción Agropecuaria. 30 pp.

Salem, J., Hassanein, A., El-Wakil, D. A., & Loutfy, N. (2022). Interaction between Growth Regulators Controls In Vitro Shoot Multiplication in Paulownia and Selection of NaCl-Tolerant Variants. Plants, 11(4), 498. https://doi.org/10.3390/plants11040498

Santos, J. P. A., De Souza, M. O., Souza, J. S., Da Silva, R. R., & Mendonça, A. V. R. (2022). Production time and container size for Simarouba amara Aubl. seedlings. Floresta e Ambiente, 29(3), e20220030.

https://doi.org/10.1590/2179-8087-FLORAM-2022-0030

Sarropoulou, V., Sperdouli, I., Adamakis, I. D., & Grigoriadou, K. (2022). The use of different LEDs wavelength and light intensities on in vitro proliferation of cherry rootstock: influence on photosynthetic pigments, photosystem II photochemistry and leaf anatomy. Plant Cell Tissue Organ Culture, 1, 1-22.

https://doi.org/10.21203/rs.3.rs-1789324/v1

Shen, H. J., Chen, J. T., Chung, H. H., & Chang, W. C. (2018). Plant regeneration via direct somatic embryogenesis from leaf explants of Tolumnia Louise Elmore ‘Elsa’. Botanical Studies, 59(4), 1-8. https://doi.org/10.1186/s40529-018-0220-3

Shekhawat, M. S., & Manokari, M. (2016). Impact of Auxins on Vegetative Propagation through Stem Cuttings of Couroupita guianensis Aubl.: A Conservation Approach. Scientifica (Cairo), 2016, 1-7. https://doi.org/10.1155/2016/6587571

Da Silva, J. A. T., Kulus, D., Zhang, X., Zeng, S., Ma, G., & Piqueras, A. (2016). Disinfection of explants for saffron (Crocus sativus) tissue culture. Environmental and Experimental Biology, 14(4), 183-198. http://doi.org/10.22364/eeb.14.25

Silva, T. S., Nepomuceno, C. F., Borges, B. P. S., Alvim, B. F. M., & Santana, J. R. F. (2013). In vitro multiplication of Caesalpinia pyramidalis (Leguminosae). Sitientibus série Ciências Biológicas, 13, 2-6. https://doi.org/10.13102/scb320

Soudre, M., Vidal, F., Mori, J., Guerra, H., Mesen, F. Perez. F. (2010). Vegetative propagation of marupa (simarouba amara aubl.) by rooting of juvenile cuttings in a non-mist propagator, Folia Amazónica, 19(1-2), 61-68. https://doi.org/10.24841/fa.v19i1-2

Souza, M. M., Bufalino, L., & Gomes, L. G. (2020). Wood characterization of Marupá (Simarouba Amara Aubl, Simaroubaceae) for use in the furniture industry. Brazilian Journal of Development, 6(12), 98163-98185. https://doi.org/10.34117/bjdv6n12-347

Su, Y. H., Tang, L. P., Zhao, X. Y., & Zhang, X. S. (2021). Plant cell totipotency: Insights into cellular reprogramming. Journal Integrative Plant Biology, 63(1), 228-243.

https://doi.org/10.1111/jipb.12972

Tabiyeh, D. T., Bernard, F., & Shacker, H. (2006). Investigation of Glutathione, Salicylic acid and GA3 Effects on Browning in Pistacia vera Shoot Tips Culture. Acta Horticulturae, 726, 201-204. https://doi.org/10.17660/ActaHortic.2006.726.31

Tang, W., & Newton, R. (2004). Increase of polyphenol oxidase and decrease of polyamines correlate with tissue browning in Virginia pine (Pinus virginiana Mill.). Plant Science, 167(3), 621-628. https://doi.org/10.1016/j.plantsci.2004.05.024

Van Staden, J., Fennell, C. W., & Taylor, N. J. (2006). Plant Stress In Vitro: the Role of Phytohormones. Acta Horticulturae, 725, 55-62.

https://doi.org/10.17660/ActaHortic.2006.725.2

Vatanpour-Azghandi, A., Villiers, T. A., Ghorbani, A. M., & Tajabadi, A. (2002). The microscopy of tissue decolouration and browning problem in pistachio callus cultures. Acta Horticulturae, 591, 377-388. https://doi.org/10.17660/ActaHortic.2002.591.58

Wang, Y. H., & Bhalla, P.L. (2004). Somatic embryogenesis from leaf explants of Australian fan flower, Scaevola aemula R. Br. Plant Cell Reports, 22(6), 408-414.

https://doi.org/10.1007/s00299-003-0707-5

Wu, W., Du, K., Kang, X., & Wei, H. (2021). The diverse roles of cytokinins in regulating leaf development. Horticulture Research, 8(1), 118.

https://doi.org/10.1038/s41438-021-00558-3

Qin, T., Shu, X., Zhuang, W., Peng, F., & Wang, Z. (2017). High Efficiency Callus Induction and Regeneration of Solanum torvum Plants. HortScience, 52(12), 1755-1758.

https://doi.org/10.21273/HORTSCI12232-17

Zanoni-Mendiburu, C. A. (1975). Propagation of filberts by stem cutting. Comb. Proc. Intnatl. Plant Propagators´ Soc. 41, 214-218.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

163 | 114




 

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.