Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio

Efecto de la edad de rebrote sobre el perfil de ácidos grasos en gramíneas tropicales

##plugins.generic.jatsParser.article.authorBio##
×

José Edwin Mojica Rodríguez

MSc, Universidad Nacional de Colombia. Investigador máster, Corporación Colombiana de Investigación Agropecuaria (Corpoica). Agustín Codazzi, Colombia.

##plugins.generic.jatsParser.article.authorBio##
×

Edwin Castro Rincón

PhD, Universidad Nacional de Colombia. Investigador PhD, Corporación Colombiana de Investigación Agropecuaria (Corpoica). Pasto, Colombia. 

##plugins.generic.jatsParser.article.authorBio##
×

Juan Carulla Fornaguera

PhD, University of Nebraska. Docente, Universidad Nacional de Colombia. Bogotá, Colombia.

##plugins.generic.jatsParser.article.authorBio##
×

Carlos Eduardo Lascano Aguilar

PhD, Texas A&M University System. Investigador emérito, Centro Internacional de Agricultura Tropical CIAT. Bogotá, Colombia. 

ácidos grasos alimentación de los animales gramíneas forrajeras rumiantes

Resumen

Se evaluó el efecto de tres edades de rebrote (tres, seis y nueve semanas) sobre la producción de forraje, calidad nutricional y perfil de ácidos grasos en gramíneas de pastoreo (diez cultivares y un híbrido)y en gramíneas de corte (cuatro cultivares). Se utilizó un diseño de parcelas divididas con bloques al azar, cuya parcela principal fue la especie forrajera y la subparcela, la edad de rebrote. Los ácidos grasos predominantes presentes en las gramíneas de corte y pastoreo fueron el palmítico (C16:0), linoleico (C18:2) y linolénico (C18:3). La concentración de ácidos grasos en el forraje fue afectada por el estado de madurez en las gramíneas de pastoreo y de corte, pero los efectos no fueron similares en todas las especies. Con excepción del pasto M. maximus cv. Tanzania, que presentó un mayor contenido de precursores de ácido linoleico conjugado, las demás especies presentaron contenidos similares de precursores, lo que sugiere que el uso de estas en la alimentación de bovinos en sistemas de doble propósito resultaría en concentraciones similares de ácido linoleico conjugado c9 t11 en la grasa de la leche.

José Edwin Mojica Rodríguez

MSc, Universidad Nacional de Colombia. Investigador máster, Corporación Colombiana de Investigación Agropecuaria (Corpoica). Agustín Codazzi, Colombia.

Edwin Castro Rincón

PhD, Universidad Nacional de Colombia. Investigador PhD, Corporación Colombiana de Investigación Agropecuaria (Corpoica). Pasto, Colombia. 

Juan Carulla Fornaguera

PhD, University of Nebraska. Docente, Universidad Nacional de Colombia. Bogotá, Colombia.

Carlos Eduardo Lascano Aguilar

PhD, Texas A&M University System. Investigador emérito, Centro Internacional de Agricultura Tropical CIAT. Bogotá, Colombia. 

Mojica Rodríguez, J. E., Castro Rincón, E., Carulla Fornaguera, J., & Lascano Aguilar, C. E. (2017). Efecto de la edad de rebrote sobre el perfil de ácidos grasos en gramíneas tropicales. Ciencia Y Tecnología Agropecuaria, 18(2), 217–232. https://doi.org/10.21930/rcta.vol18_num2_art:623

Aguilar O, Moreno B, Pabon M, Carulla J. 2009. Efecto del consumo de kikuyo (Pennisetum clandestinum) o raigrás (Lolium hibridum) sobre la concentración de ácido linoleico conjugado y el perfil de ácidos grasos de la grasa láctea. Livest Res Rural Dev. [consultado 2016 feb 15];21(4). http://www.lrrd.org/lrrd21/4/agui21049.htm.

Allakhverdiev S. 2009. Regulatory roles in photosynthesis of unsaturated fatty acids in membrane lipids. En: Wada H, Murata N, editores. Lipids in photosynthesis: essential and regulatory functions. Dordrecht, Netherlands: Springer Science. pp. 265-282. https://doi.org/10.1007/978-90-481-2863-1_17

Allen MS. 2000. Effects of diet on short-term regulation of feed intake by lactating dairy cattle. J Dairy Sci. 83(7):1598-1624. https://doi.org/10.3168/jds.S0022-0302(00)75030-2

[AOAC] Association of Official Analytical Chemists. 2010. Official Methods of Analysis of AOAC international. 18th ed.Horwitz W, editor. Gaithersburg, EE. UU.: AOAC International.

Belury MA. 2002. Dietary conjugated linoleic acid in health: physiological effects and mechanism of action. Annu Rev Nutr. 22:505-531. https://doi.org/10.1146/annurev.nutr.22.021302.121842

Benjamin S, Spener F. 2009. Conjugated linoleic acids as functional food: an insight into their health benefits. Nutr Metab (Lond). 6:36. https://doi.org/10.1186/1743-7075-6-36

Boufaied H, Chouinard P, Tremblay G, Petit H, Michaud R, Belanger G. 2003. Fatty acids in forages. I. Factors affecting concentrations. Can J Anim Sci. 83(3):501-511. https://doi.org/10.4141/A02-098

Castillo J, Olivera M, Pabon M, Ribeiro C, Daza E, Carulla J. 2014. Kinetics and thermodynamics on the in vitro biohydrogenation on linoleic acid, alpha linoleic acid and their combinations. Ponencia presentada en: 51 Reuniao Anual da Sociedade Brasileira de Zootecnia; Barra dos Coqueiros (Sergipe), Brasil.

Chilliard Y, Ferlay A, Doreau M. 2001. Effect of different types of forages, animal fat or marine oils in cow's diet on milk fat secretion and composition, especially conjugated linoleico acid (CLA) and polyunsaturated fatty acids. Livest Prod Sci. 70(1-2):31-48. https://doi.org/10.1016/S0301-6226(01)00196-8

Dewhurst R, Scollan N, Youell S, Tweed J, Humpreyds M. 2001. Influence of species, cutting date and cutting interval on the fatty acid composition of grass. Grass Forage Sci. 56(1):84-74. https://doi.org/10.1046/j.1365-2494.2001.00247.x

Dewhurst RJ, Shingfield KJ, Lee MRF, Scollan ND. 2006. Increasing the concentrations of beneficial polyunsaturated fatty acid in milk produced by dairy cows in high-forage systems. Anim Feed Sci Technol. 131(3-4):168-206. https://doi.org/10.1016/j.anifeedsci.2006.04.016

Dhiman T, Anand G, Satter L, Pariza M. 1999. Conjugated linoleic acid content of milk from cows fed different diets. J Dairy Sci. 82(10):2146-2156. https://doi.org/10.3168/jds.S0022-0302(99)75458-5

Elgersma A, Ellen G, Van Der Horst H, Muuse B, Boer H, Tamminga S. 2004. Influence of cultivar and cutting date on fatty acids composition of perennial ryegrass (Lollium perenne L.). Grass Forage Sci. 58(3):323-331. https://doi.org/10.1046/j.1365-2494.2003.00384.x

Ellis K, Innocent G, Grove-White D, Cripps P, McLeann W, Howard C, Mihm M. 2006. Comparing the fatty acid composition of organic and conventional milk. J Dairy Sci. 89(6):1938-1950. https://doi.org/10.3168/jds.S0022-0302(06)72261-5

Garces R, Mancha M. 1993. One step lipid extraction and fatty acid methyl esters preparation from fresh plant tissue. Anal Biochem. 211(1):139-143. https://doi.org/10.1006/abio.1993.1244

Gilliland T, Barrett P, Mann R, Agnew R, Fearon A. 2002. Canopy morphology and nutritional quality traits as potential grazing value indicators for Lolium perenne varieties. J Agric Sci. 139(3):257-273. https://doi.org/10.1017/S0021859602002575

Glasser F, Doreau M, Maxin G, Baumont R. 2013. Fat and fatty acid content and composition forages: a meta-analysis. Anim Feed Sci Technol. 185(1-2):19-34. https://doi.org/10.1016/j.anifeedsci.2013.06.010

Hawke J. 1973. Lipids. In: Butler G, Bailey RW, editores. Chemistry and biochemistry of herbage. Londres, Reino Unido: Academic Press.

Ip C, Banni S, Angioni E, Carta G, McGinley J, Thompson H, Barbano D, Bauman D. 1999. Conjugated linoleic acidenriched butter fat alters mammary gland morphogenesis and reduces cancer risk in rats. J Nutr. 129(12):2135-2142. https://doi.org/10.1093/jn/129.12.2135

Jensen RG. 2002. The composition of bovine milk lipids: January 1995 to December 2000. J Dairy Sci. 85(2):295-350. https://doi.org/10.3168/jds.S0022-0302(02)74079-4

Kelly M, Berry J, Dwyer D, Griinari J, Chouinard P, Van Amburgh M, Bauman D. 2008. Dietary fatty acid sources affect conjugated linoleic acid concentrations in milk from lactating dairy cows. J Nutr. 128(5):881-885. https://doi.org/10.1093/jn/128.5.881

Khan N, Farooq N, ALI M, Suleman M, Ahmad N, Sulaiman S, Cone N, Hendriks W. 2015. Effect of species and harvest maturity on the fatty acids profile of tropical forages. J Anim Plant Sci. 25(3):739-746.

Loor J, Soriano F, Lin X, Herbein J, Polan C. 2003. Grazing allowance after the morning or afternoon milking for lactating cows fed a total mixed ration (TMR) enhances trans11-18:1 and cis9, trans11-18:2 (rumenic acid) in milk fat to different extents. Anim Feed Sci Technol. 109(1-4):105-119. https://doi.org/10.1016/S0377-8401(03)00175-5

Mohammed R, Stanton CS, Kennelly JJ, Kramer JK, Mee JF, Glimm DR, O'Donovan M, Murphy JJ. 2009. Grazing cows are more efficient than zero-grazed and grass silage fed cows in milk rumenic acid production. J Dairy Sci. 92(8):387-3893. https://doi.org/10.3168/jds.2008-1613

O'Kelly J, Reich H. 1976. The fatty acid composition of tropical pastures. J Agric Sci. 86(2):427-429. https://doi.org/10.1017/S0021859600054915

Orskov E, Deb Howell F, Mould F. 1980. The use of the nylon bag technique for the evaluation of feedstuffs. Trop Anim Prod. 5:3.

Pabon M, Carulla J. 2008. Compuestos lipídicos benéficos para la salud humana asociados a la nutrición animal. Rev Colomb Cienc Pec. 21(1):136-145.

Pariza MW, Hargreaves WA. 1985. A beef-derived mutagenesis modulator inhibits initiation of mouse epidermal tumors by 7, 12 dimethylbenz[a]antrazene. Carcinogenesis. 6(4): 591-593. https://doi.org/10.1093/carcin/6.4.591

Prieto E. 2015. Efecto de la suplementación con aceites vegetales a vacas pastoreando con/sin sistema silvopastoril intensivo con leucaena sobre los ácidos grasos en la leche y la producción de metano in vitro [tesis de doctorado]. [Medellín, Colombia]: Universidad de Antioquia.

Rico J, Moreno B, Pabón M, Carulla J. 2007. Composición de la grasa láctea de la sabana de Bogotá con énfasis en ácido rumenico - CLA cis-9, trans-11. Rev Colomb Cienc Pec. 20(1):30-39.

Shingfield K, Bonnet M, Scollan N. 2013. Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal. 7(1 Suppl):132-162. https://doi.org/10.1017/S1751731112001681

Steel R, Torrie JH. 1990. Bioestadística, principios y procedimientos. 2a ed. España: McGrawHill. Capitulo11, Correlación lineal.

Toyes E, Murillo B, Espinoza J, Carreun L, Palacios A. 2013. Composición química y precursores de ácido vaccenico y rumenico en especies forrajeras en baja California Sur, México. Rev Mex Cienc Pecuarias. 4(3):373-386.

Van Soest P, Roberton J, Lewis M. 1991. Methods for dietary fiber, neutral fiber and no starch polysaccharides in relation to nutrition. J Dairy Sci. 74(10):3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Varadyova Z, Kišidayova S, Siroka P, Jalč D. 2008. Comparison of fatty acid composition of bacterial and protozoal fractions in rumen fluid of sheep fed diet supplemented with sunflower, rapeseed and linseed oils. Anim Feed Sci Technol. 144(1-2):44-54. https://doi.org/10.1016/j.anifeedsci.2007.09.033

Ward A, Wittenberg K, Froebe H, Przybylski R, Malconlmson L. 2003. Fresh forage and solin supplementation on conjugated linoleic acid levels in plasma and milk. J Dairy Sci. 86(5):1742-1750. https://doi.org/10.3168/jds.S0022-0302(03)73760-6

White S, Bertrand J, Wade M, Wade M, Washburn S, Greet J,Jenkins T. 2001. Comparison of fatty acid content of milk from Jersey and Holstein Cows consuming pasture or a total mixed ration. J Dairy Sci. 84(10):2295-2301. https://doi.org/10.3168/jds.S0022-0302(01)74676-0

Yamasaki M, Kishihara K, Ikeda I, Sugano M, Yamada K. 1999. A recommended esterification method for gas chromatographic measurement of conjugated linoleic acid. J Am Oil Chem Soc. 76(8):933-938. https://doi.org/10.1007/s11746-999-0109-0

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

1390 | 636




 

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.