Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio

Mecanismos de acción de hongos y bacterias empleados como biofertilizantes en suelos agrícolas: una revisión sistemática

##plugins.generic.jatsParser.article.authorBio##
×

Sara Paulina Restrepo Correa

Microbióloga Industrial y Ambiental, Universidad de Antioquia. Investigadora, Grupo de Investigación Salud y Sostenibilidad, Universidad de Antioquia. Medellín, Colombia. 

##plugins.generic.jatsParser.article.authorBio##
×

Eliana Carolina Pineda-Meneses

Microbióloga Industrial y Ambiental, Universidad de Antioquia. Investigadora, Grupo de Investigación Salud y Sostenibilidad, Universidad de Antioquia. 
##plugins.generic.jatsParser.article.authorBio##
×

Leonardo Alberto Ríos-Osorio

PhD, Universitat Politècnica de Catalunya. Docente e investigador, Grupo de Investigación Salud y Sostenibilidad, Universidad de Antioquia. Medellín, Colombia. 
absorción de sustancias nutritivas acidificación ácidos orgánicos biofertilizantes

Resumen

El fósforo, el nitrógeno, el hierro y el potasio son algunos compuestos necesarios para el crecimiento y desarrollo vegetal. Los fertilizantes químicos empleados para aumentar su concentración afectan significativamente el medioambiente y los ecosistemas del suelo. De acuerdo con la literatura científica, los microorganismos con potencial biofertilizante han demostrado poseer diversos mecanismos de acción para solubilizar estos compuestos y así cumplir con los requerimientos de las plantas. La presente revisión sistemática recopila información científica (publicada entre los años 2004 y 2014) que describe los mecanismos de acción de los biofertilizantes microbianos en suelos agrícolas. Se usaron tres bases de datos: ScienceDirect, SpringerLink y Scopus, mediante la ruta de búsqueda (biofertilizer) AND (bacteria OR fungi) AND (effect OR action OR mechanism). Tras la comprobación con diversos criterios de inclusión y exclusión, la búsqueda arrojó un total de 63 artículos originales, incluyendo seis de publicaciones no indexadas. Como resultado de la revisión sistemática, se evidenció que la producción de diversos ácidos orgánicos permite la acidificación del suelo, lo cual facilita la absorción de los elementos. También se pudo observar que la solubilización de fósforo es el mecanismo más frecuentemente descrito, obtenido por Pseudomonas pseudoalcaligenes con hasta 726,5 mg/L de solubilización en este elemento.

Sara Paulina Restrepo Correa

Microbióloga Industrial y Ambiental, Universidad de Antioquia. Investigadora, Grupo de Investigación Salud y Sostenibilidad, Universidad de Antioquia. Medellín, Colombia. 

Eliana Carolina Pineda-Meneses

Microbióloga Industrial y Ambiental, Universidad de Antioquia. Investigadora, Grupo de Investigación Salud y Sostenibilidad, Universidad de Antioquia. 

Leonardo Alberto Ríos-Osorio

PhD, Universitat Politècnica de Catalunya. Docente e investigador, Grupo de Investigación Salud y Sostenibilidad, Universidad de Antioquia. Medellín, Colombia. 
Restrepo Correa, S. P., Pineda-Meneses, E. C., & Ríos-Osorio, L. A. (2017). Mecanismos de acción de hongos y bacterias empleados como biofertilizantes en suelos agrícolas: una revisión sistemática. Ciencia Y Tecnología Agropecuaria, 18(2), 335–351. https://doi.org/10.21930/rcta.vol18_num2_art:635

Abd-Alla MH, El-Enany AW, Nafady NA, Khalaf DM, Morsy FM. 2014. Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia fabaL.) in alkaline soil. Microbiol Res. 169(1):49-58. https://doi.org/10.1016/j.micres.2013.07.007

Aguado-Santacruz G, Moreno-Gómez B, Jiménez-Francisco B, García-Moya E, Preciado-Ortiz R. 2012. Impacto de los sideróforos microbianos y fotosideróforos en la asimilación de hierro por las plantas: una síntesis. Rev Fitotec Mex. 35(1):9-21.

Ahemad M, Saghir M. 2012. Pseudomonas aeruginosa strain PS1 enhances growth parameters of greengram [Vigna radiata(L.) Wilczek] in insecticide-stressed soils. J Pest Sci. 84(1):123-131. https://doi.org/10.1007/s10340-010-0335-0

Ali S, Hameed S, Imran A, Iqbal M, Lazarovits G. 2014. Genetic, physiological and biochemical characterization of Bacillus sp. strain RMB7 exhibiting plant growth promoting and broad spectrum antifungal activities. Microb Cell Fact. 13:144. https://doi.org/10.1186/PREACCEPT-6657919731258908

Aseri GK, Jain N, Panwar J, Rao AV, Meghwal PR. 2008. Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of Pomegranate (Punica granatum L.) in Indian Thar Desert. Sci Hortic. 117(2):130-135. https://doi.org/10.1016/j.scienta.2008.03.014

Barua S, Tripathi S, Chakraborty A, Ghosh S, Chakrabarti K. 2011. Characterization and crop production efficiency of diazotrophic bacterial isolates from coastal saline soils. Microbiol Res. 167(2): 95-102. https://doi.org/10.1016/j.micres.2011.04.001

Beltrán M. 2014. La solubilización de fosfatos como estrategia microbiana para promover el crecimiento vegetal. Corpoica Cienc Tecnol Agropecuaria. 15(1):101-113. https://doi.org/10.21930/rcta.vol15_num1_art:401

Boraste A, Vamsi K, Jhadav A, Khairnar Y, Gupta N, Trivedi S, Patil P, Gupta G, Gupta M, Mujapara AK, et al. 2009.

Biofertilizers: a novel tool for Agriculture. Int J Microbiol. 1(2):23-31.Chaiharn M, Lumyong S. 2010. Screening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growth. Curr Microbiol. 62(1):173-181. https://doi.org/10.1007/s00284-010-9674-6

Collavino MM, Sansberro PA, Mroginski LA, Aguilar OM. 2010. Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biol Fertil Soils. 46(7):727-738. https://doi.org/10.1007/s00374-010-0480-x

Corrales L, Sánchez L, Arévalo Z, Moreno V. 2014. Bacillus: género bacteriano que demuestra ser un importante solubilizador de fosfato. NOVA. 12(21):165-178. https://doi.org/10.22490/24629448.1041

Dalton D, Kramer S. 2006. Nitrogen-fixing bacteria in non-legumes. En: Gnanamanickam SS, editor. Plant-Associated Bacteria. Netherlands: Springer.

Estrada G, Divan V, De Oliveira DM, Urquiaga S, Baldani J. 2013. Selection of phosphate-solubilizing diazotrophic Herbaspirillum and Burkholderia strains and their effect on rice crop yield and nutrient uptake. Plant Soil. 369(1):115-129. https://doi.org/10.1007/s11104-012-1550-7

Fernández L, Agaras B, Zalba P, Wall LG, Valverde C. 2012. Pseudomonasspp. isolates with high phosphate-mobilizing potential and root colonization properties from agricultural bulk soils under no-till management. Biol Fertil Soils. 48(7): 763-773. https://doi.org/10.1007/s00374-012-0665-6

George P, Gupta A, Gopal M, Thomas L, Thomas GV. 2012. Multifarious beneficial traits and plant growth promoting potential of Serratia marcescens KiSII and Enterobacter sp. RNF 267 isolated from the rhizosphere of coconut palms (Cocos nuciferaL.). World J Microbiol Biotechnol. 29(1):109-117. https://doi.org/10.1007/s11274-012-1163-6

Gong M, Du P, Liu X, Zhu C. 2014. Transformation of inorganic P fractions of soil and plant growth promotion by phosphate-solubilizing ability of Penicillium oxalicumI1. J Microbiol. 52(12):1012-1019. https://doi.org/10.1007/s12275-014-4406-4

Habibi S, Djedidi S, Prongjunthuek K, Mortuza MF, Ohkama- Ohtsu N, Sekimoto H, Yokoyoma, T. 2014. Physiological and genetic characterization of rice nitrogen fixer PGPR isolated from rhizosphere soils of different crops. Plant Soil. 379(1):51-66. https://doi.org/10.1007/s11104-014-2035-7

Jain R, Saxena J, Sharma V. 2012. Effect of phosphate-solubilizing fungi Aspergillus awamori S29 on mungbean (Vigna radiata cv. RMG 492) growth. Folia Microbiol (Praha). 57(6): 533-541. https://doi.org/10.1007/s12223-012-0167-9

Jasim B, Jimtha J, Jyothis M, Radhakrishnan EK. 2013. Plant growth promoting potential of endophytic bacteria isolated from Piper nigrum. Plant Growth Regul. 71(1):1-11. https://doi.org/10.1007/s10725-013-9802-y

Jat RS, Ahlawat IPS. 2006. Direct and residual effect of vermicompost, biofertilizers and phosphorus on soil nutrient dynamics and productivity of chickpea-fodder maize sequence. J Sustain Agr. 28(1): 41-54. https://doi.org/10.1300/J064v28n01_05

Jha CK, Saraf M. 2012. Evaluation of multispecies plant-growth-promoting consortia for the growth promotion of Jatropha curcas L. J Plant Growth Regul. 31(4):588-598. https://doi.org/10.1007/s00344-012-9269-5

Jha P, Kumar A. 2009. Characterization of novel plant growth promoting endophytic bacterium Achromobacter xylosoxidans from wheat plant. Microb Ecol. 58(1):179-188. https://doi.org/10.1007/s00248-009-9485-0

Jha Y, Subramanian RB. 2013. Characterization of root-associated bacteria from paddy and its growth-promotion efficacy. 3 Biotech. 4(3):25-330.https://doi.org/10.1007/s13205-013-0158-9

Kang SM, Radhakrishnan R, You YH, Joo GJ, Lee IJ, Lee KE, Kim JH. 2014. Phosphate solubilizing Bacillus megaterium mj1212 regulates endogenous plant carbohydrates and amino acids contents to promote mustard plant growth. Indian J Microbiol. 54(4):427-433. https://doi.org/10.1007/s12088-014-0476-6

Koh RH, Song HG. 2007. Effects of application of Rhodopseudomonas sp. on seed germination and growth of tomato under axenic conditions. J Microbiol Biotechnol. 17(11):1805-1810.

Kumar B, Chandra J. 2012. Efficiency of Bacillus coagulans as P biofertilizer to mobilize native soil organic and poorly soluble phosphates and increase crop yield. Arch Agron Soil Sci. 58(10):1099-1115. https://doi.org/10.1080/03650340.2011.575064

Kumar P, Kumar P. 2014. Enhanced nitrogen fixing in Sesbania grandiflora by Azospirillum (BPL7) sp. isolated from Godavari Belt Region, Andhra Pradesh, India. Proc Natl Acad Sci India Sect B Biol Sci. 84(3):549-559. https://doi.org/10.1007/s40011-013-0300-9

Kumar R, Ayyadurai N, Pandiaraja P, Reddy AV, Venkateswarlu Y, Prakash O, Sakthivel N. 2005. Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. J Appl Microbiol. 98(1):145-154. https://doi.org/10.1111/j.1365-2672.2004.02435.x

Lara C, Villalba M, Oviedo L. 2007. Bacterias fijadoras de nitrógeno de la zona agrícola de San Carlos. Córdoba, Colombia. Rev Colomb Biotecnol. 9(2):6-14.

Leaungvutiviroj C, Ruangphisarn P, Hansanimitkul P, Shinkawa H, Sasaki, K. 2010. Development of a new biofertilizer with a high capacity for N2 fixation, phosphate and potassium solubilization and auxin production. Biosci Biotechnol Biochem. 74(5):1098-1101. https://doi.org/10.1271/bbb.90898

Madhaiyan M, Peng N, Te NS, Hsin C, Lin C, Lin F, Reddy C, Yan H, Ji L. 2013. Improvement of plant growth and seed yield in Jatropha curcas by a novel nitrogen-fixing root associated Enterobacter species. Biotechnol Biofuels. 6:140. https://doi.org/10.1186/1754-6834-6-140

Mehnaz S, Kowalik T, Reynolds B, Lazarovits G. 2010. Growth promoting effects of corn (Zea mays) bacterial isolates under greenhouse and field conditions. Soil Biol Biochem. 42(10):1848-1856. https://doi.org/10.1016/j.soilbio.2010.07.003

Mehta P, Walia A, Kakkar N, Shirkot CK. 2014. Tricalcium phosphate solubilisation by new endophyte Bacillus methylotrophicus CKAM isolated from apple root endosphere and its plant growth-promoting activities. Acta Physiol Plant. 36(8):2033-2045. https://doi.org/10.1007/s11738-014-1581-1

Misra N, Gupta G, Jha P. 2012. Assessment of mineral phosphate solubilizing properties and molecular characterization of zinc-tolerant bacteria. J Basic Microbiol. 52(5):549-558. https://doi.org/10.1002/jobm.201100257

Mohamed AA, Eweda WEE, Heggo AM, Hassan EA. 2014. Effect of dual inoculation with arbuscular mycorrhizal fungi and sulphur-oxidising bacteria on onion (Allium cepa L.) and maize (Zea mays L.) grown in sandy soil under greenhouse conditions. Ann Agric Sci (Cairo). 59(1): 109-118. https://doi.org/10.1016/j.aoas.2014.06.015

Nagananda GS, Das A, Bhattacharya S, Kalpana T. 2010. In vitro studies on the effects of biofertilizers (Azotobacter and Rhizobium) on seed germination and development of Trigonella foenum-graecum L. using a novel glass marble containing liquid medium. Int J Botany. 6(4):394-403. https://doi.org/10.3923/ijb.2010.394.403

Ogbo FC. 2010. Conversion of cassava wastes for biofertilizer production using phosphate solubilizing fungi. Bioresource Technol. 101(11):4120-4124. https://doi.org/10.1016/j.biortech.2009.12.057

Patiño CO. 2010. Solubilización de fosfatos por poblaciones bacterianas aisladas de un suelo del Valle del Cauca: estudio de biodiversidad y eficiencia [tesis de doctorado]. [Palmira]: Universidad Nacional de Colombia.

Pindi PK, Sultana T, Vootla PK. 2014. Plant growth regulation of Bt-cotton through Bacillus species. 3 Biotech. 4(3):305-315. https://doi.org/10.1007/s13205-013-0154-0

Radha TK, Rao DLN. 2014. Plant growth promoting bacteria from cow dung based biodynamic preparations. Indian J Microbiol. 54(4):413-418. https://doi.org/10.1007/s12088-014-0468-6

Radzki W, Gutiérrez FJ, Algar E, Lucas-García JA, García-Villaraco A, Ramos B. 2013. Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek. 104(3):321-30. https://doi.org/10.1007/s10482-013-9954-9

Ram Rao DM, Kodandaramaiah J, Reddy MP, Katiyar RS, Rahmathulla VK. 2007. Effect of VAM fungi and bacterial biofertilizers on mulberry leaf quality and silkworm cocoon characters under semiarid conditions. Caspian J Env Sci. 5(2):111-117.

Ravikumar S, Kathiresan K, Thadedus Maria Lgnatiammal S, Babu M, Shanthy S. 2004. Nitrogen-fixingazotobacters from mangrove habitat and their utility as marine biofertilizers. J Exp Mar Biol Ecol. 312(1):5-17. https://doi.org/10.1016/j.jembe.2004.05.020

Ravikumar S, Shanthy S, Kalaiarasi A, Sumaya M. 2014. The biofertilizer effect of halophilic phosphate solubilising bacteria on Oryza sativa. Middle East J Sci Res. 19(10):1406-1411.

Salantur A, Ozturk A, Akten S. 2006. Growth and yield response of spring wheat (Triticum aestivum L.) to inoculation with rhizobacteria. Plant Soil Environ. 52(3):111-118. https://doi.org/10.17221/3354-PSE

Shaukat K, Afrasayab S, Hasnain S. 2006. Growth responses of Helianthus annus to plant growth promoting Rhizobacteria used as a biofertilizers. Int J Agric Res. 1(6):573-581. https://doi.org/10.3923/ijar.2006.573.581

Son T, Diep C, Giang T. 2006. Effect of Bradyrhizobia and phosphate solubilizing bacteria application on soybean in rotational system in the Mekong delta. Omonrice. 14:48-57.

Tahir M, Mirza MS, Zaheer A, Rocha Dimitrov M, Smidt H, Hameed S. 2013. Isolation and identification of phosphate solubilizer Azospirillum, Bacillus and Enterobacter strains by 16SrRNA sequence analysis and their effect on growth of wheat (Triticum aestivum L.). Aust J Crop Sci. 7(9):1284-1292.

Tan KZ, Radziah O, Halimi MS, Khairuddin AR, Habib SH, Shamsuddin ZH. 2014. Isolation and characterization of rhizobia and plant growth-promoting rhizobacteria and their effects on growth of rice seedlings. Am J Agric Biol Sci. 9(3):342-360. https://doi.org/10.3844/ajabssp.2014.342.360

Thepsukhon A, Choonluchanon S, Tajima S, Nomura M, Ruamrungsri S. 2013. Identification of endophytic bacteria associated with N2 fixation and indole acetic acid synthesis as growth promoters in Curcuma alismatifolia Gagnep. J Plant Nutr. 36(9):1424-1438. https://doi.org/10.1080/01904167.2013.793712

Trivedi P, Sa T. 2008. Pseudomonas corrugata (NRRL B-30409) mutants increased phosphate solubilization, organic acid production, and plant growth at lower temperatures. Curr Microbiol. 56(2):140-144. https://doi.org/10.1007/s00284-007-9058-8

Urrútia G, Bonfill X. 2010. [Prisma declaration: a proposal to improve the publication of systematic reviews and meta-analyses]. Med Clin (Barc). 135(11):507-511. https://doi.org/10.1016/j.medcli.2010.01.015

Usha S, Padmavathi T. 2013. Effect of plant growth promoting microorganisms from rhizosphere of Piper nigrum L. Int J Pharm Bio Sci. 4(1):835-846.

Vessey J. 2004. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 255(2):571-586. https://doi.org/10.1023/A:1026037216893

Vootla PK, Pindi PK. 2014. Enhanced Nitrogen fixing in Sesbania grandiflora by Azospirillum (BPL7) sp. isolated from Godavari Belt Region, Andhra Pradesh, India. P Natl A Sci India B. 84(3):549-559. https://doi.org/10.1007/s40011-013-0300-9

Walia A, Mehta P, Chauhan A, Shirkot CK. 2013. Effect of Bacillus subtilis strain CKT1 as inoculum on growth of tomato seedlings under net house conditions. P Natl A Sci India B. 84(1):145-155. https://doi.org/10.1007/s40011-013-0189-3

Xiao C, Zhang H, Fang Y, Chi R. 2012. Evaluation for rock phosphate solubilization in fermentation and soil-plant system using a stress-tolerant phosphate-solubilizing Aspergillus nigerWHAK1. Appl Biochem Biotechnol. 169(1):123-133. https://doi.org/10.1007/s12010-012-9967-2

Zhao L, Teng S, Liu Y. 2012. Characterization of a versatile rhizospheric organism from cucumber identified as Ochrobactrum haematophilum. J Basic Microbiol. 52(2):232-244. https://doi.org/10.1002/jobm.201000491

Zhao K, Penttinen P, Zhanga X, Ao X, Liu M, Yu X, Chen Q. 2013. Maize rhizosphere in Sichuan, China, hostsplant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiol Res. 169(1):76-82. https://doi.org/10.1016/j.micres.2013.07.003

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

2257 | 1450




 

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.