Resumen
El objetivo del estudio fue caracterizar el aceite de pulpa de bacuri Attalea phalerata Mart. ex Spreng. (Arecaceae) de acuerdo con métodos analíticos oficiales. Los contenidos totales de fenólicos y carotenoides se evaluaron mediante espectrofotometría, y la composición de tocoferoles, mediante cromatografía líquida de alta resolución. El perfil de ácidos grasos se realizó por cromatografía de gases a partir de las muestras transesterificadas con hidróxido de potasio en metanol y n-hexano. Según la composición proximal, la pulpa de bacuri registró un 41,5 % de carbohidratos y un 39,2 % de lípidos. En cuanto a las propiedades fisicoquímicas, el aceite presentó un contenido de ácidos grasos libres de 0,7 %, valor de peróxido de 1,4 meq/kg, índice de refracción de 1,463, índice de yodo de 84,3 g I2/100 g, índice de saponificación de 193,5 mg KOH/g, materia insaponificable de 0,5 % y estabilidad oxidativa de 48,7 h. Los contenidos totales fenólicos, de carotenoides y de tocoferoles fueron de 2,4 mg EAG/g, 243,0 µg/g y 86,8 mg/kg, respectivamente. El aceite de bacuri mostró una composición de ácidos grasos similar a la del aceite de oliva y un alto porcentaje de insaturación, con un 67,3 % de ácidos monoinsaturados y un 11,3 % de poliinsaturados. Los principales ácidos grasos fueron el oleico (67,3 %), el palmítico (13,3 %) y el linoleico (10,5 %). Debido a sus características fisicoquímicas, el aceite de bacuri tiene un gran potencial para ser utilizado en preparaciones alimenticias como aceite de ensaladas o en formulación de margarinas.
Association of Official Analytical Chemists [AOAC]. (2005). Official Methods of Analysis of AOAC International (18th ed.). AOAC International.
American Oil Chemists' Society [AOCS]. (2009). Official Methods and Recommended Practices of the AOCS. AOCS Press.
Arima, M., & Fukuda, T. (2011). Prostaglandin D2 and TH2 inflammation in the pathogenesis of bronchial asthma. The Korean Journal of Internal Medicine, 26(1), 8-18. https://doi.org/10.3904/kjim.2011.26.1.8
Borges, S. V., Maia, M. C., Gomes, R. C., & Cavalcanti, N. B. (2007). Chemical composition of umbu (Spondias tuberosa Arr. Cam) seeds. Química Nova, 30(1), 49-52. https://doi.org/10.1590/S0100-40422007000100011
Calder, P. C. (2013). Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? British Journal of Clinical Pharmacology, 75(3), 645-662. https://doi.org/10.1111/j.1365-2125.2012.04374.x
Codex Alimentarius Commission. (2009). Standard for Named Vegetable Oils. CXS 210-1999. Food and Agriculture Organization of the United States; World Health Organization. https://bit.ly/35xkVSS
Coimbra, M. C., & Jorge, N. (2011). Characterization of the pulp and kernel oils from Syagrus oleracea, Syagrus romanzoffiana, and Acrocomia aculeata. Journal of Food Science, 76(8), 1156-1161. https://doi.org/10.1111/j.1750-3841.2011.02358.x
Coimbra, M. C., & Jorge, N. (2012). Fatty acids and bioactive compounds of the pulps and kernels of Brazilian palm species, guariroba (Syagrus oleraces), jerivá (Syagrus romanzoffiana) and macaúba (Acrocomia aculeata). Journal of the Science of Food and Agriculture, 92(3), 679-684. https://doi.org/10.1002/jsfa.4630
Coimbra, M. C., & Jorge, N. (2013). Phenolic compounds, carotenoids, tocopherols and fatty acids present in oils extracted from palm fruits. Boletim do Centro de Pesquisa de Processamento de Alimentos, 31(2), 309-320. http://dx.doi.org/10.5380/cep.v31i2.34854
Costa-Singh, T. (2015). Avaliação dos parâmetros físico-químicos e estabilidade de compostos bioativos em óleos de polpa e amêndoa de frutos amazônicos. [PhD thesis, Universidade Estadual Paulista “Júlio de Mesquita Filho”]. Institutional repository UNESP. https://repositorio.unesp.br/handle/11449/127931
Gama, J. J., & Sylos, C. M. (2007). Effect of thermal pasteurization and concentration on carotenoid composition of Brazilian Valencia orange juice. Food Chemistry, 100(4), 1686-1690. https://doi.org/10.1016/j.foodchem.2005.01.062
Koprivnjak, O., Škevin, D., Valić, S., Majetić, V., Petričević, S., & Ljubenkov, I. (2008). The antioxidant capacity and oxidative stability of virgin olive oil enriched with phospholipids. Food Chemistry, 111(1), 121-126. https://doi.org/10.1016/j.foodchem.2008.03.045
Lima, F. F., Traesel, G. K., Menegati, S. E., Dos Santos, A. C., Souza, R. I., Oliveira, V. S., Sanjinez-Argandoña, J., Cardoso, C. A., Oesterreich, S. A., & Vieira, M. C. (2017). Acute and subacute oral toxicity assessment of the oil extracted from Attalea phalerata Mart ex Spreng. pulp fruit in rats. Food Research International, 91, 11-17. https://doi.org/10.1016/j.foodres.2016.11.019
Lopez-Huertas, E. (2010). Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. A review of intervention studies. Pharmacological Research, 61(3), 200-207. https://doi.org/10.1016/j.phrs.2009.10.007
Luzia, D. M., & Jorge, N. (2013). Bioactive substance contents and antioxidant capacity of the lipid fraction of Annona crassiflora Mart. seeds. Industrial Crops and Products, 42(1), 231-235. https://doi.org/10.1016/j.indcrop.2012.05.027
Masson, L., Camilo, C., & Torija, M. E. (2008). Caracterización del aceite de coquito de palma chilena (Jubaea chilensis). Grasas y Aceites, 59(1), 33-38. https://doi.org/10.3989/GYA.2008.V59.I1.487
McDonald, B. E., & Eskin, M. N. A. (2007). Role of fat in the diet. In M. D. Erickson (Ed.), Deep frying; chemistry, nutrition, and practical applications (2nd ed, pp. 167-171). Elsevier. https://doi.org/10.1016/B978-1-893997-92-9.50014-1
Menezes, E. M., Torres, A. T., & Srur, A. U. (2008). Valor nutricional da polpa de açaí (Euterpe oleracea, Mart.) liofilizada. Acta Amazonica, 38(2), 311-316. https://doi.org/10.1590/S0044-59672008000200014
Moreau, R. A., Johnston, D. B., & Hicks, K. B. (2007). A comparison of the levels of lutein and zeaxanthin in corn germ oil, corn fiber oil and corn kernel oil. Journal of the American Oil Chemists' Society, 84, 1039-1044. https://doi.org/10.1007/s11746-007-1137-2
Negrelle, R. R. B. (2015). Attalea phalerata Mart. ex spreng.: aspectos botânicos, ecológicos, etnobotânicos e agronômicos. Ciência Florestal, 25(4), 1061-1066. https://doi.org/10.5902/1980509820669
Parry, J., Su, L., Luther, M., Zhou, K., Yurawecz, M. P., Whittaker, P., & Yu, L. (2005). Fatty acid composition and antioxidant properties of cold-pressed marionberry, boysenberry, red raspberry, and blueberry seed oils. Journal of Agricultural and Food Chemistry, 53(3), 566-573. https://doi.org/10.1021/jf048615t
Pérez-Jiménez, F., Ruano, J., Pérez-Martínez, P., López-Segura, F., & López-Miranda, J. (2007). The influence of olive oil on human health: not a question of fat alone. Molecular Nutrition & Food Research, 51(10), 1199-1208. https://doi.org/10.1002/mnfr.200600273
Rodriguez-Amaya, D. B. (1999). A guide to carotenoids analysis in food. ILSI Press.
Sarkar, A., Golay, P., Acquistapace, S., & Craft, B. D. (2015). Increasing the oxidative stability of soybean oil through fortification with antioxidants. International Journal of Food Science and Technology, 50(3), 666-673. https://doi.org/10.1111/ijfs.12671
Schwingshackl, L., & Hoffmann, G. (2014). Monounsaturated fatty acids, olive oil and health status: a systematic review and meta-analysis of cohort studies. Lipids in Health and Disease, 13, 154. https://doi.org/10.1186/1476-511X-13-154
Siger, A., Nogala-Kalucka, M., & Lampart-Szczapa, E. (2008). The content and antioxidant activity of phenolic compounds in cold-pressed plant oils. Journal of Food Lipids, 15(2), 137-149. https://doi.org/10.1111/j.1745-4522.2007.00107.x
Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158.
Tuberoso, C. I., Kowalczyk, A., Sarritzu, E., & Cabras, P. (2007). Determination of antioxidant compounds and antioxidant activity in commercial oilseeds for food use. Food Chemistry, 103(4), 1494-1501. https://doi.org/10.1016/j.foodchem.2006.08.014