Resumen
La alicina (All) es un bioactivo con actividad antimicrobiana, antioxidante y de alta efectividad en el control de insectos y el quitosano (Qs) forma nanoencapsulados al interactuar con tripolifosfato de sodio (tpp), por lo que al pensar en la síntesis de nanoencapsulados como sistemas portadores de All con efectos fitosanitarios es de interés agroindustrial. Por lo anterior, en este estudio se sintetizaron y caracterizaron nanoencapsulados de All (NQsAll) mediante la técnica de gelificación ionotrópica. La síntesis consistió en: (i) formulación de complejos All:Qs en proporción de 0,2 g de All por 1 g Qs, partiendo de una solución de Qs (1%p/v) y un fitosanitario comercial con concentración de All = 0,6 % p/v; (ii) obtención de los sistemas NQsAll partiendo de All:Qs adicionando tpp (0,06 % p/v). Se evaluaron dos relaciones en masa de TPP:Qs (5:1 y 3:1) y por medio de ftir-atr se observaron las bandas correspondientes a los grupos sulfóxidos (1119 cm-1), la vibración de estiramiento de las aminas primarias vinculadas a All (1072 cm-1), se comprobó la interacción electrostática de TPP:Qs y se determinó el diámetro medio de partícula (DM) y el potencial-Z (PZ) de los sistemas. La relación TPP:Qs influye significativamente, siendo NQsAll (5:1) la que presentó una mejor estabilidad y un menor tamaño (PZ = 0,67 mV; DM = 144,6 nm). Se evaluó el porcentaje de inhibición del radical dpph• comprobando que la nanoencapsulación preservó la capacidad antioxidante. Así, NQsAll (5:1) mostró el mejor desempeño para formular un sistema nanoportador. Estos sistemas son una buena alternativa para la conservación de All e incrementan la dispersión y la humectabilidad durante la aplicación en el cultivo.
Amagase, H., Petesch, B. L., Matsuura, H., Kasuga, S., & Itakura, Y. (2001). Intake of garlic and its bioactive components. The Journal of nutrition, 131(3), 955S-962S. https://doi.org/10.1093/jn/131.3.955s
Arias, L. R., Fung, L. F., & Mendoza, L. R. (2017). Impacto de la alicina como agente microbicida en la sobrevida de ratas Wistar con sepsis abdominal comparado con lavado peritoneal con solución fisiológica. Jóvenes en la ciencia, 3, 210-214. https://www.jovenesenlaciencia.ugto.mx/index.php/jovenesenlaciencia/article/view/2249/1745
Bai, Y., Yu, B., Xu, X., Jin, Z., Tian, Y., & Lu, L. (2010). Comparison of encapsulation properties of major garlic oil components by hydroxypropyl β-cyclodextrin. European Food Research and Technology, 231(4), 519-524. https://doi.org/10.1007/s00217-010-1307-6
Barreto Pinilla, C. M, Noreña, C. P., & Brandelli, A. (2017). Development and characterization of phosphatidylcholine nanovesicles, containing garlic extract, with antilisterial activity in milk. Food Chemistry, 220, 470-476. https://doi.org/10.1016/j.foodchem.2016.10.027
Bozin, B., Mimica-Dukic, N., Samojlik, I., Goran, A., & Igic, R. (2008). Phenolics as antioxidants in garlic (Allium sativum L., Alliaceae). Food Chemistry, 111(4), 925-929. https://doi.org/10.1016/j.foodchem.2008.04.071
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity using the DPPH free radical method. Lebensmittel Wissenchaft und Technologie Food Science and Technology, 28(1), 25-35. https://doi.org/10.1016/S0023-6438(95)80008-5
Brugnerotto, J., Lizardi, J., Goycoolea, F. M., Argüelles-Monal, W., Desbrieres, J., & Rinaudo, M. (2001). An infrared investigation in relation with chitin and chitosan characterization. Polymer, 42(8), 3569-3580. https://doi.org/10.1016/S0032-3861(00)00713-8
Broussignac, P. (1968). Chitosan: a natural polymer not well known by the industry. Chim. Ind. Genie Chim, 99(9), 1241-1247. https://doi.org/10.1016/s0023-6438(95)80008-5
Bhumkar, D. R., & Pokharkar, V. B. (2006). Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: a technical note. AAPS PharmSciTech, 7(2), E138-E143. https://doi.org/10.1208/pt070250
Chalar Vargas, L. R., Moya Mamani, J. C., Vargas Alvarez, E., Sejas Rebollo, M., & Romero, B. (2014). Función Antimicrobiana de la Alicina de Ajo en cultivos de Staphylococcus aureus, Pseudomonas aeruginosa y Escherichia coli. Revista Científica Ciencia Médica, 17(1), 26-28. https://www.redalyc.org/pdf/4260/426041228008.pdf
Choudhary, R. C., Kumari, S., Kumaraswamy, R. V., Sharma, G., Kumar, A., Budhwar, S., Pal, A., Raliya, R., Biswas, P., & Saharan, V. (2019). Chitosan nanomaterials for smart delivery of bioactive compounds in agriculture. En: Nanoscale engineering in agricultural management (pp. 124-139). CRC Press. https://doi.org/10.1201/9781315123950-7
Desbrieres, J., Peptu, C., Ochiuz, L., Savin, C., Popa, M., & Vasiliu, S. (2019). Application of chitosan-based formulations in controlled drug delivery. En: Sustainable Agriculture Reviews 36 (pp. 241-314). https://doi.org/10.1007/978-3-030-16581-9_7
Du, W. L., Xu, Y. L., Xu, Z. R., & Fan, C. L. (2008). Preparation, characterization and antibacterial properties against E. coli K88 of chitosan nanoparticle loaded copper ions. Nanotechnology, 19(8), 085707. https://doi.org/10.1088/0957-4484/19/8/085707
Ferrari, F., Bonferoni, M. C., Rossi, S., Sandri, G., & Caramella, C. M. (2012). Manufacture Techniques of Chitosan‐Based Microparticles and Nanoparticles for Biopharmaceuticals. Chitosan‐Based Systems for Biopharmaceuticals: Delivery, Targeting and Polymer Therapeutics, 137-158. https://doi.org/10.1002/9781119962977.ch9
Figueroa-López, K. J., Torres Vargas, O. L., Prías-Barragán, J. J., & Ariza-Calderón, H. (2014). Optical and structural characterization of Allium sativum L. nanoparticles impregnate in bovine loin. Acta Agronómica, 64(1), 54-60. http://dx.doi.org/10.15446/acag.v64n1.43651
González Ramírez, P. J. (2019). Efecto de la humedad relativa en la variación del perfil metabólico y efecto hepatoprotector del ajo negro [tesis de maestría]. Universidad Veracruzana, México. https://cdigital.uv.mx/bitstream/handle/1944/50315/GonzalezRamirezPaola.pdf?sequence=3
HMA 4. (s. f.). Insumos sustentables. http://www.fs.com.ar/agro-fitosanitarios-naturales.html
Huang, L., Cheng, X., Liu, C., Xing, K., Zhang, J., Sun, G., Li, X., & Chen, X. (2009). Preparation, characterization, and antibacterial activity of oleic acid-grafted chitosan oligosaccharide nanoparticles. Frontiers of Biology in China, 4, 321-327. https://doi.org/10.1007/s11515-009-0027-4
InfoStat Group. (2016). InfoStat. http://www.infostat.com.ar
Jaramillo, E. (2019). Estudio comparativo de la Alicina obtenida del ajo (Allium sativum L.) como inhibidor natural de hongo versus un inhibidor químico (Inhimold) para su uso en el almacenamiento de alimento para camarón [tesis de grado]. Universidad Católica de Santiago de Guayaquil, Ecuador. http://repositorio.ucsg.edu.ec/bitstream/3317/12653/1/T-UCSG-PRE-TEC-CIA-49.pdf
Jeong, Y. Y., Ryu, J. H., Shin, J. H., Kang, M. J., Kang, J. R., Han, J., & Kang, D. (2016). Comparison of anti-oxidant and anti-inflammatory effects between fresh and aged black garlic extracts. Molecules, 21, 430. https://doi.org/10.3390/molecules21040430
Jonassen, H., Kjøniksen, A. L., & Hiorth, M. (2012). Stability of chitosan nanoparticles cross-linked with tripolyphosphate. Biomacromolecules, 13(11), 3747-3756. https://doi.org/10.1021/bm301207a
Kheiri, A., Moosawi Jorf, S. A., Malihipour, A., Saremi, H., & Nikkhah, M. (2017). Synthesis and characterization of chitosan nanoparticles and their effect on Fusarium head blight and oxidative activity in wheat. International Journal of Biological Macromolecules, 102, 526-538. https://doi.org/10.1016/j.ijbiomac.2017.04.034
Kim, J. E., Choi, N. H., & Kang, S. C. (2007). Anti-listerial properties of garlic shoot juice at growth and morphology of Listeria monocytogenes. Food Control, 18(10), 1198-1203. https://doi.org/10.1016/j.foodcont.2006.07.017
Kim, T. Y., Park, S. S., & Cho, S. Y. (2012). Adsorption characteristics of Reactive Black 5 onto chitosan beads cross-linked with epichlorohydrin. Journal of Industrial and Engineering Chemistry, 18(4), 1458-1464. https://doi.org/10.1016/j.jiec.2012.02.006
Kong, M., Chen, X. G., Xing, K., & Park, H. J. (2010). Antimicrobial properties of chitosan and mode of action: a state of the art review. International Journal of Food Microbiology, 144(1), 51-63. https://doi.org/10.1016/j.ijfoodmicro.2010.09.012
Kyzas, G. Z., Bikiaris, D. N., & Lazaridis, N. K. (2008). Low-swelling chitosan derivatives as biosorbents for basic dyes. Langmuir, 24(9), 4791-4799. https://doi.org/10.1021/la7039064
Lawson, L. D., Wang, Z. J., & Papadimitriou, D. (2001). Allicin release under simulated gastrointestinal conditions from garlic powder tablets employed in clinical trials on serum cholesterol. Planta Medica, 67(1), 13-18. https://doi.org/10.1055/s-2001-10624
Lawson, L. D., & Hunsaker, S. M. (2018). Allicin bioavailability and bioequivalence from garlic supplements and garlic foods. Nutrients, 10(7), 812. https://doi.org/10.3390/nu10070812
Liu, X., & Zhang, L. (2015). Removal of phosphate anions using the modified chitosan beads: Adsorption kinetic, isotherm and mechanism studies. Powder Technology, 277, 112-119. https://doi.org/10.1016/j.powtec.2015.02.055
Mármol, Z., Páez, G., Rincón, M., Araujo, K., Aiello, C., Chandler, C., & Gutiérrez, E. (2011). Quitina y Quitosano polímeros amigables. Una revisión de sus aplicaciones. Revista Tecnocientífica URU, 1, 53-58.
http://revencyt.ula.ve/storage/repo/ArchivoDocumento/rtcuru/n1/art06.pdf
Mármol, Z., Fernández, A., Páez, G., Rincón, M., Araujo, K., & Aiello, C. (2012). Efecto de la quitina sobre variables relacionadas con la estabilidad en vino blanco. Revista Facultad de Agronomía de la Universidad de Zulia, 29, 624-644. https://www.researchgate.net/profile/Cateryna-Aiello-Mazzarri/publication/289092515_Effect_of_chitin_on_variables_related_with_stability_in_white_wine/links/58c828adaca2723ab16b0ef4/Effect-of-chitin-on-variables-related-with-stability-in-white-wine.pdf
Mocayar Marón, F. J., Camargo, A. B., & Manucha, W. (2020). Allicin pharmacology: Common molecular mechanisms against neuroinflammation and cardiovascular diseases. Life Science, 249, 117513. https://doi.org/10.1016/j.lfs.2020.117513
Moya Salvador, A. (2020). Compuestos organosulfurados presentes en aliáceas y sus propiedades saludables [tesis de maestría]. Universidad de Sevilla, Sevilla. https://hdl.handle.net/11441/104080
Mwaheb, M. A., Hussain, M., Tian, J., Zhang, X., Hamid, M. I., El-Kassim, N. A., Hassan, G. M., Xiang, M., & Liu, X. (2017). Synergetic suppression of soybean cyst nematodes by chitosan and Hirsutella minnesotensis via the assembly of the soybean rhizosphere microbial communities. Biological Control, 115, 85-94. https://doi.org/10.1016/j.biocontrol.2017.09.011
Pinilla, C. M., Noreña, C. P., & Brandelli, A. (2017). Development and characterization of phosphatidylcholine nanovesicles, containing garlic extract, with antilisterial activity in milk. Food Chemistry, 220, 470-476. https://doi.org/10.1016/j.foodchem.2016.10.027
Pirak, T., Jangchud, A., & Jantawat, P. (2012). Characterisation of physical, chemical and antimicrobial properties of allicin-chitosan complexes. International Journal of Food Science & Technology, 47(7), 1339-1347. https://doi.org/10.1111/j.1365-2621.2012.02978.x
Qi, L., Xu, Z., Jiang, X., Hu, C., & Zou, X. (2004). Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research, 339, 2693-2700. https://doi.org/10.1016/j.carres.2004.09.007
Rasul Suleria, H. A., Sadiq Butt, M., Muhammad Anjum, F., Saeed, F., Batool, R., & Nisar Ahmad, A. (2011). Aqueous garlic extract and its phytochemical profile; special reference to antioxidant status. International Journal of Food Sciences and Nutrition, 63(4), 431-439. https://doi.org/10.3109/09637486.2011.634786
Santhosha, S. G., Jamuna, P., & Prabhavathi, S. N. (2013). Bioactive components of garlic and their physiological role in health maintenance: A review. Food bioscience, 3, 59-74. https://doi.org/10.1016/j.fbio.2013.07.001
Sierra, D. M., Orozco, C. P., Rodríguez, M. A., & Villa, W. A. (2013). Optimización de un protocolo de extracción de quitina y quitosano desde caparazones de crustáceos. Scientia Et Technica, 18(1), 260-266.
https://doi.org/10.22517/23447214.7555
Souza, F. N., Gebara, C., Ribeiro, M. C., Chaves, K. S., Gigante, M. L., & Grosso, C. R. (2012). Production and characterization of microparticles containing pectin and whey proteins. Food Research International, 49(1), 560-566. http://doi.org/10.1016/j.foodres.2012.07.041
Valderrama, A., Lay, J., Flores, Y., Zavaleta, D., & Delfín, A. R. (2020). Factorial design for preparing chitosan nanoparticles and its use for loading and controlled release of indole-3-acetic acid with effect on hydroponic lettuce crops. Biocatalysis and Agricultural Biotechnology, 26, 101640. https://doi.org/10.1016/j.bcab.2020.101640
Valencia, G. A. (2015). Efecto antimicrobiano del quitosano: una revisión de la literatura. Revista Scientia Agroalimentaria, 2.
http://revistas.ut.edu.co/index.php/scientiaagro/article/view/743/579
Velásquez, C. L. (2006). Quitina y quitosano: materiales del pasado para el presente y el futuro. Avances en Química, 1(2), 15-21. https://www.redalyc.org/pdf/933/93310204.pdf
Tantawan, P., Jangchud, A., & Jantawat, P. (2012). Characterisation of physical, chemical and antimicrobial properties of allicin-chitosan complexes. International Journal of Food Science and Technology, 47, 1339-1347. https://doi.org/10.1111/j.1365-2621.2012.02978.x
Tavares, L., & Noreña, C. P. (2019). Encapsulation of garlic extract using complex coacervation with whey protein isolate and chitosan as wall materials followed by spray drying. Food Hydrocolloids, 89, 360-369.
https://doi.org/10.1016/j.foodhyd.2018.10.052
Tirtom, V. N., Dinçer, A., Becerik, S., Aydemir, T., & Çelik, A. (2012). Comparative adsorption of Ni(II) and Cd(II) ions on epichlorohydrin crosslinked chitosan–clay composite beads in aqueous solution. Chemical Engineering Journal, 197, 379-386. https://doi.org/10.1016/J.CEJ.2012.05.059
Wang, Y., Jia, J., Shao, J., Shu, X., Ren, X., Wu, B., & Yan, Z. (2018). Preservative effects of allicin microcapsules on daily foods. LWT-Food science and Technology, 98, 225-230. https://doi.org/10.1016/j.lwt.2018.08.043