Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio

Esponjas de queratina con capacidad de sorción de hidrocarburos, obtenidas a partir de residuos de la industria avícola: Esponjas de queratina con capacidad de sorción de hidrocarburos

CIDCA (Centro de Investigación y Desarrollo en Criotecnología de Alimentos) CONICET
CIDCA (Centro de Investigación y Desarrollo en Criotecnología de Alimentos) CONICET
Calorimetría diferencial de barrido derrame de petróleo materiales sorbentes plumas de pollo sorbentes

Resumen

Las plumas de pollo son residuos de la industria avícola que se generan en grandes volúmenes, están conformadas por queratina, proteína rica en cisteína, enlaces disulfuro y residuos hidrofóbicos y su reconversión es de gran interés para diseñar biomateriales con aplicaciones ambientales. El objetivo es generar esponjas de queratina a partir de plumas aplicables en el control de derrames de crudo, los cuales representan un importante daño ambiental. Se realizaron síntesis de esponjas a partir de plumas acondicionadas: E1: urea (2 M), sulfito de sodio (0,125 M), dodecilsulfato sódico (0,05 M), pH= 9, 90 ºC, 30 min y E2: urea (7,75 M), sulfito de sodio (0,48 M), pH= 6,5, 65 ºC, 120 min. Las disoluciones se dializaron y liofilizaron logrando el re-entrecruzamiento de la queratina. En la caracterización estructural (ftir-atr) se observaron las bandas Amida-A (3330 cmˉ¹), Amida-i (1616 cm-1), Amida-ii (1580-1510 cm-1) y Amida-iii (1240-1230 cm-1). La deconvolución de Amida-i indicó que la conformación de la estructura secundaria (hoja-plegada-β/α-hélice/β-turn) para E1 fue de 55,1/19,6/25,3 % y de 52,1/36,7/10,5 % para E2. Se evidenció por calorimetría diferencial de barrido la gran estabilidad térmica (Tdesnaturalización (E1) = 143,5 ºC; (E2) = 215 °C), se determinó la isoterma de sorción de agua, se ajustó con la ecuación gab y se cuantificó la capacidad de sorción de crudo (csc, g crudo/g queratina) y de retención (% crc). Por su parte, E2 presentó un mejor desempeño de sorción de crudo (csc = 21,22, crc = 78 % que E1 (csc = 5,87, crc = 47 %) y fue posible sintetizar esponjas de queratina con buenas características sorbentes de crudo, siendo una opción para la revalorización de la biomasa y su aplicación podría extenderse al control de otros contaminantes.

Orjuela-Palacio, J. M., & Zaritzky, N. E. . (2023). Esponjas de queratina con capacidad de sorción de hidrocarburos, obtenidas a partir de residuos de la industria avícola: Esponjas de queratina con capacidad de sorción de hidrocarburos. Ciencia Y Tecnología Agropecuaria, 24(1). https://doi.org/10.21930/rcta.vol24_num1_art:2830

Abdel-Moghny, T., & Keshawy, M. (2014). An overview on the treatment of oil spill using sorbent materials: synthetic and natural oil sorbent. Reino Unido: Lambert Academic Publishing.

Akhtar, W., & Edwards, H. G. (1997). Fourier-transform Raman spectroscopy of mammalian and avian keratotic biopolymers. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 53(1), 81-90. https://doi.org/10.1016/S1386-1425(97)83011-9

Aboushwareb, T., Eberli, D., Ward, C., Broda, C., Holcomb, J., Atala, A., & Van Dyke, M. (2009). A keratin biomaterial gel hemostat derived from human hair: evaluation in a rabbit model of lethal liver injury. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 90(1), 45-54. https://doi.org/10.1002/jbm.b.31251

Balaji, S., Kumar, R., Sripriya, R., Rao, U., Mandal, A., Kakkar, P., Reddy, N., & Sehgal, P. K. (2012). Characterization of keratin–collagen 3D scaffold for biomedical applications. Polymers for Advanced Technologies, 23(3), 500-507. https://doi.org/10.1002/pat.1905

Barton, P. M. J. (2011). A forensic investigation of single human hair fibres using FTIR-ATR spectroscopy and chemometrics [Doctoral dissertation, Queensland University of Technology, Brisbane]. https://core.ac.uk/download/pdf/10903929.pdf

Byler, D. M., & Susi, H. (1986). Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers: Original Research on Biomolecules, 25(3), 469-487. https://doi.org/10.1002/bip.360250307

Cao, S., Dong, T., Xu, G., & Wang, F. M. (2017). Oil spill cleanup by hydrophobic natural fibers. Journal of Natural Fibers, 14(5), 727-735. https://doi.org/10.1080/15440478.2016.1277820

Cardamone, J. M. (2010). Investigating the microstructure of keratin extracted from wool: Peptide sequence (MALDI-TOF/TOF) and protein conformation (FTIR). Journal of Molecular Structure, 969(1-3), 97-105. https://doi.org/10.1016/j.molstruc.2010.01.048

Cardamone, J. M., Tunick, M. H., & Onwulata, C. (2010). Keratin sponge/hydrogel: I. Fabrication and characterization. Textile Research Journal, 83(7), 661-670. https://doi.org/10.1177/0040517512468814

Cortez, P. M. (2020). La espectroscopia FTIR-ATR aplicada al análisis de alimentos y bebidas. En Cortez, P. M. (ed.), Principios y aplicaciones de la espectroscopia de infrarrojo en el análisis de alimentos y bebidas (pp. 83-99). México: Ciatej. https://ciatej.mx/files/divulgacion/divulgacion_5f89fd7801268.pdf

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. InfoStat versión 2020. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

Esparza, Y. O. (2017). Fabrication of feather keratin bio-based materials: Thermoplastics and tissue engineered scaffolds (tesis doctoral). Universidad de Alberta, Canadá. https://doi.org/10.7939/R39W09C65

Hill, P., Brantley, H., & Van Dyke, M. (2010). Some properties of keratin biomaterials: kerateines. Biomaterials, 31(4), 585-593.

https://doi.org/10.1016/j.biomaterials.2009.09.076

Ifelebuegu, A., & Momoh, Z. (2015). An Evaluation of the Adsorptive Properties of Coconut Husk for Oil Spill Cleanup [Conferencia]. International Conference on Advances in Applied Science and Environmental Technology, Bangkok, Tailandia. https://doi.org/10.15224/978-1-63248-040-8-38

Ifelebuegu, A. O., & Chinonyere, P. (2016). Oil spill clean-up from sea water using waste chicken feathers. In Proceedings of the 4th international conference on advances in applied science and environmental technology (ASET’16), Bangkok, Thailand. IRED (pp. 61-64).

Ifelebuegu, A. O., & Johnson, A. (2017). Nonconventional low-cost cellulose-and keratin-based biopolymeric sorbents for oil/water separation and spill cleanup: A review. Critical Reviews in Environmental Science and Technology, 47(11), 964-1001. https://doi.org/10.1080/10643389.2017.1318620

Isarankura Na Ayutthaya, S., Tanpichai, S., & Wootthikanokkhan, J. (2015). Keratin extracted from chicken feather waste: extraction, preparation, and structural characterization of the keratin and keratin/biopolymer films and electrospuns. Journal of Polymers and the Environment, 23(4), 506-516.

https://doi.org/10.1007/s10924-015-0725-8

Karan, C. P., Rengasamy, R. S., & Das, D. (2011). Oil spill cleanup by structured fibre assembly. Indian Journal of Fibre & Textile Research, 36(2), 190-200. http://nopr.niscair.res.in/bitstream/123456789/11898/1/IJFTR%2036%282%29%20190-200.pdf

Katoh, K., Tanabe, T., & Yamauchi, K. (2004). Novel approach to fabricate keratin sponge scaffolds with controlled pore size and porosity. Biomaterials, 25, 4255-4262. https://doi.org/10.1016/j.biomaterials.2003.11.018

Madaghiele, M., Demitri, C., Sannino, A., & Ambrosio, L. (2014). Polymeric hydrogels for burn wound care: Advanced skin wound dressings and regenerative templates. Burns & Trauma, 2(4), 2321-3868. https://doi.org/10.4103/2321-3868.143616

Ministerio de Agricultura, Ganadería y Pesca de Argentina. (2020). Anuario avícola 2020- Año XXV N.° 83. Ministerio de Agricultura, Ganadería y Pesca de Argentina. https://www.magyp.gob.ar/sitio/areas/aves/informes/boletines/_archivos//000000_Datos%20Hist%C3%B3ricos/000083_Nro%2083%20Anuario%20Avicola%202020.pdf

Malafaya, P. B., Silva, G. A., & Reis, R. L. (2007). Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Advanced drug delivery reviews, 59(4-5), 207-233. https://doi.org/10.1016/j.addr.2007.03.012

Martínez-Hernández, A. L., Velasco-Santos de Icaza, M., & Castaño, V. M. (2005). Microstructural characterisation of keratin fibres from chicken feathers. International Journal of Environment and Pollution, 23(2), 162-177. https://doi.org/10.1504/IJEP.2005.006858

Martelli, S. M., Moore, G., Paes, S. S., Gandolfo, C., & Laurindo, J. B. (2006). Influence of plasticizers on the water sorption isotherms and water vapor permeability of chicken feather keratin films. LWT-Food Science and Technology, 39(3), 292-301. https://doi.org/10.1016/j.lwt.2004.12.014

OriginLab Corporation. (2010). Origin (Pro), 8va versión. Northampton, MA, Estados Unidos. www.originlab.com

Patrucco, A., Cristofaro, F., Simionati, M., Zoccola, M., Bruni, G., Fassina, L., Visai, L., Magenes, G., Mossotti, R., Montarsolo, A., & Tonin, C. (2016). Wool fibril sponges with perspective biomedical applications. Materials Science and Engineering: C, 61, 42-50. https://doi.org/10.1016/j.msec.2015.11.073

Rahman, M. S., & Sablani, S. S. (2008). Water activity measurement methods of foods. En M. S. Rahman (editor). Food properties handbook (pp. 9-30). Boca Ratón, Estados Unidos: CRC Press.

Ramírez-Paredes, F. I., Manzano-Muñoz, T., Garcia-Prieto, J. C., Bello-Estévez, J. F., Zhadan, G. G., Shnyrov, V. L., Kennedy, F., & Roig, M. G. (2013). Biosorption of heavy metals from acid mine drainages onto pig bristles, poultry feathers and crustacean shells industrial biowastes. Journal of Basic & Applied Sciences, 9, 510. http://dx.doi.org/10.6000/1927-5129.2013.09.66

Rouse, J. G., & Van Dyke, M. E. (2010). A review of keratin-based biomaterials for biomedical applications. Materials, 3(2), 999-1014. https://doi.org/10.3390/ma3020999

Sánchez Ramírez, D. O., Carletto, R. A., Tonetti, C., Giachet, F. T., Varesano, A., & Vineis, C. (2017). Wool keratin film plasticized by citric acid for food packaging. Food Packaging and Shelf Life, 12, 100-106. https://doi.org/10.1016/j.fpsl.2017.04.004

Sharma, S., Gupta, A., Kumar, A., Kee, C. G., Kamyab, H., & Saufi, S. M. (2018). An efficient conversion of waste feather keratin into ecofriendly bioplastic film. Clean Technologies and Environmental Policy, 20(10), 2157-2167. https://doi.org/10.1007/s10098-018-1498-2

Shavandi, A., Silva, T. H., Bekhit, A. A., & Bekhit, A. E. (2017). Keratin: dissolution, extraction and biomedical application. Biomaterials Science, 5(9), 1699-1735. https://doi.org/10.1039/C7BM00411G

Sinkiewicz, I., Śliwińska, A., Staroszczyk, H., & Kołodziejska, I. (2016). Alternative Methods of Preparation of Soluble Keratin from Chicken Feathers. Waste and Biomass Valorization, 8(4), 1043-1048. https://doi.org/10.1007/s12649-016-9678-y

Srinivasan, A., & Viraraghavan, T. (2010). Oil removal from water using biomaterials. Bioresource Technology, 101(17), 6594-6600. https://doi.org/10.1016/j.biortech.2010.03.079

Takahashi, K., Yamamoto, H., Yokote, Y., & Hattori, M. (2004). Thermal behavior of fowl feather keratin. Bioscience, Biotechnology, and Biochemistry, 68(9), 1875-1881. https://doi.org/10.1271/bbb.68.1875

Tachibana, A., Furuta, Y., Takeshima, H., Tanabe, T., & Yamauchi, K. (2002). Fabrication of wool keratin sponge scaffolds for long-term cell cultivation. Journal of Biotechnology, 93(2), 165-170. https://doi.org/10.1016/S0168-1656(01)00395-9

Tonin, C., Aluigi, A., Varesano, A., & Vineis, C. (2010). Keratin-based nanofibres. En A. Kumar (ed.), Nanofibers (pp. 139-158). https://doi.org/10.5772/8151

Torii, H., & Tasumi, M. (1996). Theoretical analyses of the amide I infrared bands of globular proteins. In: Mantsch H. and Chapman D. editors, Biochem Infrared spectroscopy of biomolecules, Chapter 1: 1-18. Wiley-Liss Inc.

Vasconcelos, A., & Cavaco-Paulo, A. (2013). The use of keratin in biomedical applications. Current Drug Targets, 14(5), 612-619. https://doi.org/10.2174/1389450111314050010

Vineis C., Varesano A., Varchi G., Aluigi A. (2019) Extraction and Characterization of Keratin from Different Biomasses. In: Sharma S., Kumar A. (eds) Keratin as a Protein Biopolymer. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-02901-2_3

Wang J, Hao S, Luo T, Cheng Z, Li W, Gao F, Guo T, Gong Y, Wang B (2017) Feather keratin hydrogel for wound repair: preparation, healing effect and biocompatibility evaluation. Colloids Surf B Biointerfaces, 149, 341-350. https://doi.org/10.1016/j.colsurfb.2016.10.038

Wojciechowska, E., Włochowicz, A., Wysocki, M., Pielesz, A., & Wesełucha-Birczyńska, A. (2002). The application of Fourier-transform infrared (FTIR) and Raman spectroscopy (FTR) to the evaluation of structural changes in wool fibre keratin after deuterium exchange and modification by the orthosilicic acid. Journal of Molecular Structure, 614(1-3), 355-363. https://doi.org/10.1016/S0022-2860(02)00276-4

Wolok, E., Barafi, J., Joshi, N., Girimonte, R., & Chakraborty, S. (2020). Study of bio-materials for removal of the oil spill. Arabian Journal of Geosciences, 13(23), 1-11. https://doi.org/10.1007/s12517-020-06244-3

Zhou, L. T., Yang, G., Yang, X. X., Cao, Z. J., & Zhou, M. H. (2014). Preparation of regenerated keratin sponge from waste feathers by a simple method and its potential use for oil adsorption. Environmental Science and Pollution Research, 21(8), 5730-5736. https://doi.org/10.1007/s11356-014-2513-8

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

836 | 571 | 148




 

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.