Resumen
actualmente, se están produciendo ceras por hidrotratamiento de aceite de palma, sin embargo, los productos obtenidos no siempre alcanzan las condiciones de punto de fusión y dureza requeridas por la industria cosmética. Debido a esta problemática, el interés de este trabajo fue evaluar un proceso de cristalización sin solvente con el objetivo de incrementar la temperatura de fusión y los rendimientos másicos de la biocera, acercándolos a los intervalos de los valores de las propiedades fisicoquímicas que requiere el mercado. Para cumplir con este propósito, se determinó el rango operativo de la temperatura de cristalización por calorimetría diferencial de barrido (dsc) y difracción de rayos X (drx). Una vez conocidos los puntos de cristalización, se procedió a calentar la muestra hasta los 50 °C y seguidamente se realizó un enfriamiento controlado hasta que la biocera 1 alcanzara los 40 °C para y de 30 °C para la biocera 2, y a estas temperaturas se consiguieron dos fracciones (líquida y sólida). Las fracciones sólidas presentaron un incremento en la temperatura de fusión de 47 °C a 49 °C para la biocera 1, y de 45 ºC a 47 ºC para la biocera 2. El proceso de cristalización no separó las diferentes familias de compuestos presentes en las bioceras, por lo que no se evidenciaron cambios significativos en los parámetros índice de acidez, saponificación y yodo. Además, futuras investigaciones en otras técnicas de refinación complementarias a la cristalización, como neutralización y decoloración, permitirán a la biocera de palma cumplir con los criterios de calidad internacionales para ser utilizada como ingrediente en las industrias cosmética y farmacéutica.
Agarwal, A., & Sarviya, R. M. (2017). Characterization of Commercial Grade Paraffin wax as Latent Heat Storage material for Solar dryers. Materials Today: Proceedings, 4(2), 779-789. https://doi.org/10.1016/j.matpr.2017.01.086
Alam, M., Akram, D., Sharmin, E., Zafar, F., & Ahmad, S. (2014). Vegetable oil based eco-friendly coating materials: A review article. Arabian Journal of Chemistry, 7(4), 469- 479. https://doi.org/10.1016/j.arabjc.2013.12.023
As’ad, A. M., Yeneneh, A. M., & Obanijesu, E. O. (2015). Solvent dewaxing of heavy crude oil with methyl ethyl ketone. Journal of Petroleum & Environmental Biotechnology, 6(2). https://doi.org/10.4172/2157-7463.1000213
Basson, I., & Reynhardt, E. C. (1988). An investigation of the structures and molecular dynamics of natural waxes. I. Beeswax. Journal of Physics D: Applied Physics, 21(9), 1421-1428. https://doi.org/10.1088/0022-3727/21/9/016
Bayés‐García, L., Sato, K., & Ueno, S. (2020). Polymorphism of Triacylglycerols and Natural Fats. En Bailey’s Industrial Oil and Fat Products. https://doi.org/10.1002/047167849x.bio020.pub2
de Lucas, A., García, A., Álvarez, A., & Gracia, I. (2007). Supercritical extraction of long chain n-alcohols from sugar cane crude wax. Journal of Supercritical Fluids, 41(2), 267-271. https://doi.org/10.1016/j.supflu.2006.09.013
Dey, S., Reang, N. M., Das, P. K., & Deb, M. (2021). A comprehensive study on prospects of economy, environment, and efficiency of palm oil biodiesel as a renewable fuel. Journal of Cleaner Production. 286, 124981. https://doi.org/10.1016/j.jclepro.2020.124981
Dijkstra, A. J. (2013). Edible Oil Processing from a Patent Perspective Edible Oil Processing from a Patent Perspective. En: Edible Oil Processing from a Patent Perspective (pp. 157-171), Springer Science. http://dx.doi.org/10.1007/978-1-4614-3351-4_6
Edwards, R. T. (1957). Crystal Habit of Paraffin Wax Unpredictable malcrystallization often interferes in proc-essing paraffin wax. Re-examination of some old questions is another step toward better production and lower costs. Industrial And Engineering Chemistry, 49(4), 750-757. https://doi.org/10.1021/ie50568a042
Fedepalma. (2022). La palma de aceite en Colombia. Fedepalma. http://web.fedepalma.org/la-palma-de-aceite-en-colombia-departamentos
Fei, T., & Wang, T. (2017). A review of recent development of sustainable waxes derived from vegetable oils. Current Opinion in Food Science, 16, 7-14. https://doi.org/10.1016/j.cofs.2017.06.006
Fernández-Arche, A., Márquez-Martín, A., Vázquez, R., Perona, J. S., Terencio, C., Pérez-Camino, C., & Ruiz-Gutiérrez, V. (2009). Long-chain fatty alcohols from pomace olive oil modulate the release of proinflammatory mediators. Journal of Nutritional Biochemistry, 20(3), 155-162. https://doi.org/10.1016/j.jnutbio.2008.01.007
Ferris, S. W., & Cowles, H. C. (1945). Crystal behavior of paraffin wax. Industrial and Engineering Chemistry, 37, 1054-1062. https://doi.org/10.1021/ie50431a016
Gao, Z., Rohani, S., Gong, J., & Wang, J. (2017). Recent Developments in the Crystallization Process: Toward the Pharmaceutical Industry. Engineering, 3(3), 343-353. https://doi.org/10.1016/J.ENG.2017.03.022
Gharby, S. (2022). Refining Vegetable Oils: Chemical and Physical Refining. Scientific World Journal. 6627013. https://doi.org/10.1155/2022/6627013
Gunawan, E. R., & Suhendra, D. (2008). Wax esters production by alcoholysis of palm oil fractions. Indonesian Journal of Chemistry, 8(3). http://dx.doi.org/10.22146/ijc.21591
Guzmán, A., Torres, J. E., Prada, L. P., & Nuñez, M. L. (2010). Hydroprocessing of crude palm oil at pilot plant scale. Catalysis Today, 156(1-2), 38-43. https://doi.org/10.1016/j.cattod.2009.11.015
Hariyadi, P. (2020). Food safety & nutrition issues: Challenges and opportunities for Indonesian palm oil. IOP Conference Series: Earth and Environmental Science, 418(1). https://doi.org/10.1088/1755-1315/418/1/012003
Icontec. (1988). NTC 1486: Cera natural de abejas y cera sintética para la industria de cosméticos. Icontec. https://tienda.icontec.org/gp-cera-natural-de-abejas-y-cera-sintetica-para-la-industria-de-cosmeticos-ntc1466-1998.html
Kellens, M., Meeussen, W., Riekel, C., & Reynaers, H. (1990). Time resolved x-ray diffraction studies of the polymorphic behaviour of tripalmitin using synchrotron radiation. Chemistry and Physics of Lipids, 52(2), 79-98. https://doi.org/10.1016/0009-3084(90)90153-I
Kuszlik, A. K., Meyer, G., Heezen, P. A., & Stepanski, M. (2010). Chemical Engineering Research and Design Solvent-free slack wax de-oiling - Physical limits. Chemical Engineering Research and Design, 88(9), 1279-1283. https://doi.org/10.1016/j.cherd.2010.01.009
Larsson, K. (1966). Classification of glyceride crystal forms. Acta chemica Scandinavica, 20(8), 2255-2260. https://doi.org/10.3891/acta.chem.scand.20-2255
Lee, Y. F. (2008). Partial acyl glyceride based biowaxes, biocandles prepared therefrom and their preparation methods. European Patent Office, 1-21. https://patents.google.com/patent/EP1935971A1/pt
Louanate, A., Otmani, R., Kandoussi, K., & Boutaous, M. (2020). Non-isothermal crystallization kinetics of paraffin wax as a phase changing energy storage material. Physica Scripta, 95(10), 105003. https://doi.org/10.1088/1402-4896/abb49f
Lye Chew, C., Yong Ng, C., Onn Hong, W., Yeong Wu, T., Lee, Y. Y., Ee Low, L., San Kong, P., & Seng Chan, E. (2021). Improving Sustainability of Palm Oil Production by Increasing Oil Extraction Rate: a Review. Food and Bioprocess Technology, 14, 573-586. https://doi.org/10.1007/s11947-020-02555-1/Published
Mackerer, C. R., Griffis, L. C., Grabowski, J. S., & Reitman, F. A. (2003). Petroleum mineral oil refining and evaluation of cancer hazard. Applied Occupational and Environmental Hygiene, 18(11), 890-901. https://doi.org/10.1080/10473220390237467
Pirow, R., Blume, A., Hellwig, N., Herzler, M., Huhse, B., Hutzler, C., Pfaff, K., Thierse, H. J., Tralau, T., Vieth, B., & Luch, A. (2019). Mineral oil in food, cosmetic products, and in products regulated by other legislations. Critical Reviews in Toxicology, 49(9), 742-789. https://doi.org/10.1080/10408444.2019.1694862
Pratik, V., & Surekha, D. (2018). Refining of palm oil: A review on palm oil refining process, 3-MCPD esters in refined palm oil, and possible reduction tacticsfor 3-MCPD esters. International Journal of Agricultural Engineering, 11, 81-85. https://doi.org/10.15740/HAS/IJAE/11.Sp.Issue/81-85
Robles, L. V. (2011). Los excipientes y su funcionalidad en productos farmacéuticos sólidos; Revista Mexicana de Ciencias Farmacéuticas, 42(1), 18-36. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-01952011000100003
Saji, V. S. (2020). Wax-based artificial superhydrophobic surfaces and coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 602. https://doi.org/10.1016/j.colsurfa.2020.125132
Sato, K. (2018). Crystallization of Lipids: Fundamentals and Applications in Food, Cosmetics, and Pharmaceuticals. John Wiley & Sons. https://doi.org/10.1002/9781118593882
Soliman, F. S. (2020). Paraffin. IntechOpen. https://doi.org/10.5772/intechopen.75234
Susanto, B. H., Nasikin, M., Sukirno, & Wiyo, A. (2014). Synthesis of Renewable Diesel through Hydrodeoxygenation Using Pd/zeolite Catalysts. Procedia Chemistry, 9, 139-150. https://doi.org/10.1016/j.proche.2014.05.017
Woittiez, L. S., van Wijk, M. T., Slingerland, M., van Noordwijk, M., & Giller, K. E. (2017). Yield gaps in oil palm: A quantitative review of contributing factors. European Journal of Agronomy, 83, 57-77. https://doi.org/10.1016/j.eja.2016.11.002
Yadav, V. G., Yadav, G. D., & Patankar, S. C. (2020). The production of fuels and chemicals in the new world: critical analysis of the choice between crude oil and biomass vis-à-vis sustainability and the environment. Clean Technologies and Environmental Policy, 22(9), 1757-1774. https://doi.org/10.1007/s10098-020-01945-5
Zikri, A., & Aznury, M. (2020). Green diesel production from Crude Palm Oil (CPO) using catalytic hydrogenation method. IOP Conference Series: Materials Science and Engineering, 823(1). https://doi.org/10.1088/1757-899X/823/1/012026