Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio

Optimización de películas comestibles de origen marino e incorporación de extracto de orégano para la evaluación de sus propiedades: Optimization of marine origin edible films and incorporation of oregano extract for the evaluation of their properties

Instituto Tecnológico de la Producción
Fondo Nacional de Desarrollo Científico y Tecnológico
##plugins.generic.jatsParser.article.authorBio##
×

Renzo Romero-Santivañez

Fishing Engineer with experience in participation in Research Projects with competitive funds. He also has specialized studies and experience in Formulation and Project Management.

extracto de orégano gelatina materiales de empaque optimización

Resumen

La formulación para la elaboración de películas de origen marino se obtuvo mediante un análisis multirrespuesta. El objetivo de la investigación fue evaluar las variables que influyen en la obtención de las películas comestibles con extracto de orégano, tales como: la influencia de la temperatura de proceso (Tp, X1), la concentración de glicerol (Cg, X2) y la temperatura de secado (Ts, X3) sobre las propiedades mecánicas de las películas: resistencia a la tracción (rt, Y1) y elongación al corte (eac, Y2). Como resultado, las condiciones óptimas fueron: Tp: 60,3 °C, Cg: 0,134 g de glicerol/g gelatina y Ts: 50,0 °C con 0,991 de deseabilidad. Los valores experimentales de rt fueron 8,64 ± 0,424 MPa y de eac 198,60 ± 2,40 %. Con los parámetros óptimos hallados, se prepararon formulaciones con 4 % p/v de gelatina y cuatro concentraciones de extracto de orégano con eo de: 2,0 %, 5,0 %, 7,5 % y 10,0 % v/v. Esto causó la disminución de la rt y la solubilidad en 8,8 %, así como el incremento de eac en 50,7 % de los polifenoles extraíbles y de la actividad antioxidante. La permeabilidad al vapor de agua no varió, la permeabilidad al oxígeno disminuyó en 50 % en películas con 5 % de eo y la permeabilidad al aceite se observó en películas con 7,5 % y 10 % de eo. Estas películas podrían servir en el envasado de alimentos susceptibles a la oxidación.

Renzo Romero-Santivañez, Fondo Nacional de Desarrollo Científico y Tecnológico

Fishing Engineer with experience in participation in Research Projects with competitive funds. He also has specialized studies and experience in Formulation and Project Management.

Pandia-Estrada, S., y R. Romero-Santivañez. «Optimización De películas Comestibles De Origen Marino E incorporación De Extracto De orégano Para La evaluación De Sus Propiedades: Optimization of Marine Origin Edible Films and Incorporation of Oregano Extract for the Evaluation of Their Properties». Ciencia Y Tecnología Agropecuaria, vol. 24, n.º 1, enero de 2023, doi:10.21930/rcta.vol24_num1_art:2884.

Amarowicz, R., Zegarska, Z., Rafałowski, R., Pegg, R., Karamac, M., & Kosinska, A. (2009). Antioxidant activity and free radical-scavenging capacity of ethanolic extracts of thyme, oregano, and marjoram. Europe Journal Lipid Science, 111, 1111-1117. https://doi.org/10.1002/ejlt.200800170

ASTM. (1995). ASTM D-3985-Standard Test Method for Oxygen Gas Transmission Rate Through Plastic Film and Sheeting Using a Coulometric Sensor. Estados Unidos: ASTM International. https://www.astm.org/d3985-17.html

ASTM. (2001). Standard test mehod for tensile properties of thin plastic sheeting, D882-91. Estados Unidos: ASTM International. Https://standards.globalspec.com/std/13050669/astm-d882

ASTM. (2013). ASTM F-1249-Standard Test Method for Water Vapor Transmission Rate Through Plastic Film and Sheeting Using a Modulated Infrared Sensor. Estados Unidos: ASTM International. https://standards.globalspec.com/std/3853033/ASTM%20F1249-13

Cai, Y., Luo, Q., Sun, M., & Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences, 74(17), 2157-2184. https://doi.org/10.1016/j.lfs.2003.09.047

De Carvalho, R., & Grosso, C. (2004). Characterization of gelatin based films modified with transglutaminase, glyoxal and formaldehyde. Food Hydrocolloids, 18(5), 717-726. https://doi.org/10.1016/j.foodhyd.2003.10.005

Chiou, B. S., Avena-Bustillos, R., Bechtel, P., Jafri, H., Narayan, R., Imam, S., Glenn, G., & Orts, W. (2008). Cold water fish gelatin films: Effects of cross-linking on thermal, mechanical, barrier, and biodegradation properties. European Polymer Journal, 44(11), 3748-3753. https://doi.org/10.1016/j.eurpolymj.2008.08.011

Chiou, B. S., Avena-Bustillos, R., Bechtel, P., Imam, S., Glenn., G, & Orts, W. (2009). Effects of drying temperature on barrier and mechanical properties of cold-water fish gelatin films. Journal of Food Engineering, 95(2), 327-331. https://doi.org/10.1016/j.jfoodeng.2009.05.011

Cuq, B., Gontard, N., Cuq, J. L., & Guilbert, S. (1997). Selected Functional Properties of Fish Myofibrillar Protein-Based Films as Affected by Hydrophilic Plasticizers. Journal Agricultural Food Chemistry, 45(3), 622-626. https://doi.org/10.1021/jf960352i

Derringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12(4), 214-219. https://doi.org/10.1080/00224065.1980.11980968

Fan, H. F., Dumont, M. J., & Simpson, B. (2020). Preparation and physicochemical characterization of films prepared with salmon skin gelatin extracted by a trypsin-aided process. Current Research in Food Science, 3, 146-157. https://doi.org/10.1016/j.crfs.2020.04.002

Gómez-Estaca, J., Montero, P., Fernández-Martín, F., Alemán, A., & Gómez-Guillén, M. C. (2009). Physical and chemical properties of tuna-skin and bovine-hide gelatin films with added aqueous oregano and rosemary extracts. Food Hydrocolloids, 23 (5), 1334-1341. https://doi.org/10.1016/j.foodhyd.2008.09.013

Hajivand, P., Aryanejad, S., Akbari, I., & Hemmati, A. (2020). Fabrication and characterization of a promising oregano-extract/psyllium-seed mucilage edible film for food Packaging. Journal of Food Science, 85(8), 2481-2490. https://doi.org/10.1111/1750-3841.15331

Han, J. H. (2005). New technologies in food packaging: overview. En: Han, J. H. (ed.) Innovations in Food Packaging. Países Bajos: Elsevier. https://doi.org/10.1016/C2011-0-06876-X

Han, J.H. 2014. Edible Films and Coatings: A Review. In: Han, J. H. (ed.) Innovations in Food Packaging. Países Bajos: Elsevier. https://doi.org/10.1016/C2011-0-06876-X

Hoque, S., Benjakul, S., & Prodpran, T. (2010). Effect of heat treatment of film-forming solution on the properties of film from cuttlefish (Sepia pharaonis) skin gelatin. Journal of Food Engineering, 96(1), 66-73. https://doi.org/10.1016/j.jfoodeng.2009.06.046

Hoque, S., Benjakul, S., & Prodpran, T. (2011). Properties of film from cuttlefish (Sepia pharaonis) skin gelatin incorporated with cinnamon, clove and star anise extracts. Food Hydrocolloids, 25(5), 1085-1097. https://doi.org/10.1016/j.foodhyd.2010.10.005

Krochta, J. M. (2002). Protein as Raw Materials for Films and Coatings: Definitions, Current Status and Opportunities. En: A. Gennadios (ed.). Protein-based Films and coatings. Estados Unidos: Editorial CRC Press.

Limpisophon, K., Tanaka, M., Weng, W., Abe, S., & Osako, K. (2009). Characterization of gelatin films prepared from under-utilized blue shark (Prionace glauca) skin. Food Hydrocolloids, 23(7), 1993-2000. https://doi.org/10.1016/j.foodhyd.2009.03.014

Liu, C., Huang, J., Zheng, X., Liu, S., Lu, K., Tang, K., & Liu, J. (2020). Heat sealable soluble soybean polysaccharide/gelatin blend edible films for food packaging applications. Food Packaging and Shelf Life, 24, 100485. https://doi.org/10.1016/j.fpsl.2020.100485

Ma, Q., Liang, S., Xua, S., Li, J., & Wang, L. (2019). Characterization of antioxidant properties of soy bean protein-based films with Cortex Phellodendri extract in extending the shelf life of lipid. Food Packaging and Shelf Life, 22, 100413. https://doi.org/10.1016/j.fpsl.2019.100413

McHugh, H., Avena-Bustillos, F., & Krochta, J. M. (1993). Hydrophilic Edible Films: Modified Procedure for Water Vapor Permeability and Explanation of Thickness Effects. Journal of Food Science, 58(4), 899-903. https://doi.org/10.1111/j.1365-2621.1993.tb09387.x

Miron, T., Gazi, I., & Plaza Del Moral, M. (2010). Romanian aromatic plants as sources of antioxidants. Innovative Romanian Food Biotechnology, 6, 18-24.

http://www.bioaliment.ugal.ro/ejournal.htm

Nur Hanani, Z. A., Roos, Y. H., & Kerry, J. P. (2012). Use of beef, pork and fish gelatin sources in the manufacture of films and assessment of their composition and mechanical properties. Food Hydrocolloids, 29(1), 144-151. https://doi.org/10.1016/j.foodhyd.2012.01.015

Núñez-Flores, R., Giménez, B., Fernández-Martín, F., López-Caballero, M. E., Montero, M. P., & Gómez-Guillén, M. C. (2013). Physical and functional characterization of active fish gelatin films incorporated with lignin. Food Hydrocolloids, 30(1), 163-172. https://doi.org/10.1016/j.foodhyd.2012.05.017

Salgado, P., López-Caballero, E., Gómez-Guillén, M. C., Mauri, A., & Montero, P. (2012). Exploration of the antioxidant and antimicrobial capacity of two sunflower protein concentrate films with naturally present phenolic compounds. Food Hydrocolloids, 29(2), 374-381. https://doi.org/10.1016/j.foodhyd.2012.03.006

Singleton, V., Orthofer, R., & Lamuela-Raventós, R. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1

Sobral P. J., Menegalli F. C., Hubinguer M. D., & Roques, M. A. (2001). Mechanical, water vapor barrier and thermal properties of gelatin based edible films. Food Hydrocolloids, 15(4-6), 423-432. https://doi.org/10.1016/S0268-005X(01)00061-3

Teixeira, B., Marques, A., Ramos, C., Serrano, C., Matos, O., Neng, N., Nogueira, J., Saraiva, J., & Nunes, M. (2013). Chemical composition and bioactivity of different oregano (Origanum vulgare) extracts and essential oil. Industrial crops and Products, 43(1), 587-595. https://doi.org/10.1016/j.indcrop.2012.07.069

Thomazine, M., Carvalho, R., & Sobral, P. (2005). Physical Properties of Gelatin Films Plasticized by Blends of Glycerol and Sorbitol. Journal of Food Science. 70(3), 172-176. https://doi.org/10.1111/j.1365-2621.2005.tb07132.x

Wang, L., Liu, L., Holmes, J., Kerry, J., & Kerry, J. (2007). Assessment of film-forming potential and properties of protein and polysaccharide-based biopolymer films. International Journal of Food Science and Technology, 42(9), 1128-1138. https://doi.org/10.1111/j.1365-2621.2006.01440.x

Wang, L., Liu, F., Jiang, Y., Chai, Z., Li, P., Cheng, Y., Jing, H., & Leng, X. (2011). Synergistic Antimicrobial Activities of Natural Essential Oils with Chitosan Films. Journal of Food and Food Chemistry, 59(1), 12411-12419. https://doi.org/10.1021/jf203165k

Wu, J., Ge, S., Liu, H., Wang, S., Chen, S., Wang, J., Li, J., & Zhang, Q. (2014). Properties and antimicrobial activity of silver carp (Hypophthalmichthys molitrix) skin gelatin-chitosan films incorporated with oregano essential oil for fish preservation. Food Packaging and shelf life, 2(1), 7-16. https://doi.org/10.1016/j.fpsl.2014.04.004

Zhang, X., Zhao, Y., Li, Y., Zhu, L., Fang, Z., & Shi, Q. (2020). Physicochemical, mechanical and structural properties of composite edible films based on whey protein isolate/psyllium seed gum. International Journal of Biological Macromolecules, 153(1), 892-901. https://doi.org/10.1016/j.ijbiomac.2020.03.018

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

35 | 34




 

Creative Commons License Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2022 Ciencia y Tecnología Agropecuaria