Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio

Efecto del tratamiento térmico y de digestibilidad in vitro en compuestos bioactivos de cuatro tipos de papas nativas (Solanum tuberosum spp. andigena)

Universidad Nacional Hermilio Valdizan Huánuco
Universidad Nacional Hermilio Valdizán
Universidad Nacional Hermilio Valdizán
Universidad Nacional Hermilio Valdizán
Universidad Nacional Hermilio Valdizán
Universidad Nacional Hermilio Valdizán
Dirección Regional de Agricultura
antocianinas antioxidantes compuestos fenoles digestión pepsina

Resumen

En Perú se producen más de 3500 variedades de papas, sin embargo, es poca la información disponible sobre las propiedades antioxidantes que poseen. El objetivo de la investigación fue evaluar el efecto de los tratamientos térmicos de hervido y de fritura, y la digestión in vitro en el contenido de polifenoles totales, antocianinas y actividad antioxidante en cuatro variedades de papas nativas. Las papas nativas clon de pulpa rojo (C1), clon de pulpa azul (C2), variedad Elena 1198 (V4) y la variedad Kitipsho (V8) fueron obtenidas del centro poblado de Huallmish a 3500 m s.n.m. para la evaluación de principios activos, las muestras sometidas a cocción y fritura fueron licuadas y se realizaron extracciones con metanol y también se realizó la digestión in vitro. Los resultados en las papas nativas mostraron diferencias en peso, longitud y diámetro, además, tampoco se encontró la presencia de vitamina C. Los tratamientos térmicos mediante hervido, fritura y luego del proceso de digestión in vitro, indujeron variaciones en el contenido de componentes bioactivos (P < 0,05), donde las cuatro variedades de papa mostraron un incremento en su capacidad para inhibir el catión abts, lo que estaría relacionado con el tipo de antioxidante y el potencial de hidrógeno del medio al cual fue sometido durante la digestión in vitro. En conclusión, las muestras de papas nativas luego de los tratamientos de hervido, fritura y digestión in vitro incrementaron la actividad antioxidante para secuestrar el catión ABTS.

Natividad Bardales, A. D., Villanueva Tiburcio, J. E. ., Chamorro Gómez, R. E., Cueto Rosales , C. R., Capcha Godoy, P. R., Paucar Tito, J. L., & Mendoza Aguilar, A. (2023). Efecto del tratamiento térmico y de digestibilidad in vitro en compuestos bioactivos de cuatro tipos de papas nativas (Solanum tuberosum spp. andigena). Ciencia Y Tecnología Agropecuaria, 24(3). https://doi.org/10.21930/rcta.vol24_num3_art:3177

Abramovič, H., Grobin, B., Poklar Ulrih, N., & Cigić, B. (2018). Relevance and Standardization of In Vitro Antioxidant Assays: ABTS, DPPH, and Folin–Ciocalteu [Research Article]. Journal of Chemistry, 2018, 4608405. https://doi.org/10.1155/2018/4608405

AOAC. (2023). Scientific Standards & Methods. https://www.aoac.org/scientific-solutions/

Becker, M. M., Nunes, G. S., Ribeiro, D. B., Silva, F. E., Catanante, G., & Marty, J. L. (2019). Determination of the Antioxidant Capacity of Red Fruits by Miniaturized Spectrophotometry Assays. Journal of the Brazilian Chemical Society, 30(5), 1108-1114. https://doi.org/10.21577/0103-5053.20190003

Bellumori, M., Innocenti, M., Michelozzi, M., Cerretani, L., & Mulinacci, N. (2017). Coloured-fleshed potatoes after boiling: Promising sources of known antioxidant compounds. Journal of Food Composition and Analysis, 59, 1-7. https://doi.org/10.1016/j.jfca.2017.02.004

Benson, L. (2019). A Chef’s Perspective on Potatoes and Diet. American Journal of Potato Research, 96(2), 98-99. https://doi.org/10.1007/s12230-019-09718-7

Bibi, S., Navarre, D. A., Sun, X., Du, M., Rasco, B., & Zhu, M. J. (2019). Beneficial Effect of Potato Consumption on Gut Microbiota and Intestinal Epithelial Health. American Journal of Potato Research, 96(2), 170-176. https://doi.org/10.1007/s12230-018-09706-3

Burgos, G., Amoros, W., Muñoa, L., Sosa, P., Cayhualla, E., Sanchez, C., Díaz, C., & Bonierbale, M. (2013). Total phenolic, total anthocyanin and phenolic acid concentrations and antioxidant activity of purple-fleshed potatoes as affected by boiling. Journal of Food Composition and Analysis, 30(1), 6-12. https://doi.org/10.1016/j.jfca.2012.12.001

Chauhan, A., Saxena, D. C., & Singh, S. (2015). Total dietary fibre and antioxidant activity of gluten free cookies made from raw and germinated amaranth (Amaranthus spp.) flour. LWT - Food Science and Technology, 63(2), 939-945. https://doi.org/10.1016/j.lwt.2015.03.115

Chitchumroonchokchai, C., Diretto, G., Parisi, B., Giuliano, G., & Failla, M. L. (2017). Potential of golden potatoes to improve vitamin A and vitamin E status in developing countries. PLoS ONE, 12(11). https://doi.org/10.1371/journal.pone.0187102

de Haan, S., Burgos, G., Liria, R., Rodriguez, F., Creed-Kanashiro, H. M., & Bonierbale, M. (2019). The Nutritional Contribution of Potato Varietal Diversity in Andean Food Systems: A Case Study. American Journal of Potato Research, 96(2), 151-163. https://doi.org/10.1007/s12230-018-09707-2

Duarte-Delgado, D., Narváez-Cuenca, C.-E., Restrepo-Sánchez, L.-P., Kushalappa, A., & Mosquera-Vásquez, T. (2015). Development and validation of a liquid chromatographic method to quantify sucrose, glucose, and fructose in tubers of Solanum tuberosum Group Phureja. Journal of Chromatography B, 975, 18-23. https://doi.org/10.1016/j.jchromb.2014.10.039

Faller, A. L., Fialho, E., & Liu, R. H. (2012). Cellular Antioxidant Activity of Feijoada Whole Meal Coupled with an in Vitro Digestion. Journal of Agriculture and Food Chemistry, 60(19), 4826-4832. https://doi.org/10.1021/jf300602w

Fellegrini, N., Ke, R., Yang, M., & Rice-Evans, C. (1999). [34] Screening of dietary carotenoids and carotenoid-rich fruit extracts for antioxidant activities applying 2,2′-azinobis (3-ethylenebenzothiazoline-6-sulfonic acid radical cation decolorization assay. En Packer, L. (Ed.), Methods in Enzymology, 299 (pp. 379-389). Academic Press. https://doi.org/10.1016/S0076-6879(99)99037-7

Floegel, A., Kim, D. O., Chung, S. J., Koo, S. I., & Chun, O. K. (2011). Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. Journal of Food Composition and Analysis, 24(7), 1043-1048. https://doi.org/10.1016/j.jfca.2011.01.008

Galdón, B. R., Rodríguez, L. H., Mesa, D. R., León, H. L., Pérez, N. L., Rodríguez Rodríguez, E. M., & Romero, C. D. (2012). Differentiation of potato cultivars experimentally cultivated based on their chemical composition and by applying linear discriminant analysis. Food Chemistry, 133(4), 1241-1248. https://doi.org/10.1016/j.foodchem.2011.10.016

García-Torres, S. M., Chire-Fajardo, G. C., Repo-Carrasco, R., & Ureña-Peralta, M. O. (2022). Efecto de la fritura sobre los componentes bioactivos de la papa nativa (Solanum tuberosum sp.) Puka Ambrosio. Revista Chilena de Nutrición, 49(1), 7-16. https://doi.org/10.4067/s0717-75182022000100007

Granito, M., Brito, Y., & Torres, A. (2007). Chemical composition, antioxidant capacity and functionality of raw and processed Phaseolus lunatus. Journal of the Science of Food and Agriculture, 87(15), 2801-2809. https://doi.org/10.1002/jsfa.2926

Hernández, Y., Lobo, M. G., & González, M. (2006). Determination of vitamin C in tropical fruits: A comparative evaluation of methods. Food Chemistry, 96(4), 654-664. https://doi.org/10.1016/j.foodchem.2005.04.012

Hernández-Medina, M., Torruco-Uco, J. G., Chel-Guerrero, L., & Betancur-Ancona, D. (2008). Caracterización fisicoquímica de almidones de tubérculos cultivados en Yucatán, México. Food Science and Technology, 28, 718-726. https://doi.org/10.1590/S0101-20612008000300031

Hirose, Y., Fujita, T., Ishii, T., & Ueno, N. (2010). Antioxidative properties and flavonoid composition of Chenopodium quinoa seeds cultivated in Japan. Food Chemistry, 119(4), 1300-1306. https://doi.org/10.1016/j.foodchem.2009.09.008

Horton, D., & Samanamud, K. (2013). Peru’s native potato revolution [brochure]. Centro Internacional de la Papa. https://cgspace.cgiar.org/handle/10568/67167

Huang, W. Y., Davidge, S. T., & Wu, J. (2013). Bioactive Natural Constituents from Food Sources - Potential Use in Hypertension Prevention and Treatment. Critical Reviews in Food Science and Nutrition, 53(6), 615-630. https://doi.org/10.1080/10408398.2010.550071

Jansky, S. H. (2010). Potato Flavor. American Journal of Potato Research, 87(2), 209-217. https://doi.org/10.1007/s12230-010-9127-6

Ji, X., Rivers, L., Zielinski, Z., Xu, M., MacDougall, E., Stephen, J., Zhang, S., Wang, Y., Chapman, R. G., Keddy, P., Robertson, G. S., Kirby, C. W., Embleton, J., Worrall, K., Murphy, A., De Koeyer, D., Tai, H., Yu, L., Charter, E., & Zhang, J. (2012). Quantitative analysis of phenolic components and glycoalkaloids from 20 potato clones and in vitro evaluation of antioxidant, cholesterol uptake, and neuroprotective activities. Food Chemistry, 133(4), 1177-1187. https://doi.org/10.1016/j.foodchem.2011.08.065

Jiménez, M. E., Rossi, A. M., & Sammán, N. C. (2009). Phenotypic, agronomic and nutritional characteristics of seven varieties of Andean potatoes. Journal of Food Composition and Analysis, 22(6), 613-616. https://doi.org/10.1016/j.jfca.2008.08.004

Kanter, M., & Elkin, C. (2019). Potato as a Source of Nutrition for Physical Performance. American Journal of Potato Research, 96(2), 201-205. https://doi.org/10.1007/s12230-018-09701-8

Kita, A., Bąkowska-Barczak, A., Hamouz, K., Kułakowska, K., & Lisińska, G. (2013). The effect of frying on anthocyanin stability and antioxidant activity of crisps from red- and purple-fleshed potatoes (Solanum tuberosum L.). Journal of Food Composition and Analysis, 32(2), 169-175. https://doi.org/10.1016/j.jfca.2013.09.006

Koh, J., Xu, Z., & Wicker, L. (2020). Blueberry pectin and increased anthocyanins stability under in vitro digestion. Food Chemistry, 302, 125343. https://doi.org/10.1016/j.foodchem.2019.125343

Kolbe, H., & Stephan-Beckmann, S. (1997). Development, growth and chemical composition of the potato crop (solanum tuberosum L.). II. Tuber and whole plant. Potato Research, 40(2), 135-153. https://doi.org/10.1007/BF02358240

Kumari, M., Kumar, M., & Solankey, S. S. (2018). Breeding Potato for Quality Improvement. Potato - From Incas to All Over the World. IntechOpen. https://doi.org/10.5772/intechopen.71482

Lee, S. H., Oh, S. H., Hwang, I. G., Kim, H. Y., Woo, K. S., Woo, S. H., Kim, H. S., Lee, J., & Jeong, H. S. (2016). Antioxidant Contents and Antioxidant Activities of White and Colored Potatoes (Solanum tuberosum L.). Preventive Nutrition and Food Science, 21(2), 110-116. https://doi.org/10.3746/pnf.2016.21.2.110

Lemos, M. A., Aliyu, M. M., & Hungerford, G. (2015). Influence of cooking on the levels of bioactive compounds in Purple Majesty potato observed via chemical and spectroscopic means. Food Chemistry, 173, 462-467. https://doi.org/10.1016/j.foodchem.2014.10.064

Liang, D., Zhu, T., Ni, Z., Lin, L., Tang, Y., Wang, Z., Wang, X., Wang, J., Lv, X., & Xia, H. (2017). Ascorbic acid metabolism during sweet cherry (Prunus avium) fruit development. PLoS ONE, 12(2). https://doi.org/10.1371/journal.pone.0172818

Liu, Y., Zhang, D., Wu, Y., Wang, D., Wei, Y., Wu, J., & Ji, B. (2014). Stability and absorption of anthocyanins from blueberries subjected to a simulated digestion process. International Journal of Food Sciences and Nutrition, 65(4), 440-448. https://doi.org/10.3109/09637486.2013.869798

López-Cobo, A., Gómez-Caravaca, A. M., Cerretani, L., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2014). Distribution of phenolic compounds and other polar compounds in the tuber of Solanum tuberosum L. by HPLC-DAD-q-TOF and study of their antioxidant activity. Journal of Food Composition and Analysis, 36(1), 1-11. https://doi.org/10.1016/j.jfca.2014.04.009

Margraf, T., Karnopp, A. R., Rosso, N. D., & Granato, D. (2015). Comparison between Folin-Ciocalteu and Prussian Blue Assays to Estimate The Total Phenolic Content of Juices and Teas Using 96-Well Microplates. Journal of Food Science, 80(11), C2397-2403. https://doi.org/10.1111/1750-3841.13077

Mileo, A. M., & Miccadei, S. (2016). Polyphenols as Modulator of Oxidative Stress in Cancer Disease: New Therapeutic Strategies. Oxidative Medicine and Cellular Longevity, 2016, 6475624. https://doi.org/10.1155/2016/6475624

Muhammad, A., Mohammed, I., Yusuf, H., Nasiru, M., & Mu, T. (2018). Yield of Potato (Solanum tuberosum L.) as Influenced by Variety and Planting Date in the Sudan Savanna Ecological Zone of Nigeria. International Journal of Life-Sciences Scientific Research. 4. https://www.researchgate.net/publication/325125787_Yield_of_Potato_Solanum_tuberosum_L_as_Influenced_by_Variety_and_Planting_Date_in_the_Sudan_Savanna_Ecological_Zone_of_Nigeria

Narváez-Cuenca, C. E., Peña, C., Restrepo-Sánchez, L. P., Kushalappa, A., & Mosquera, T. (2018). Macronutrient contents of potato genotype collections in the Solanum tuberosum Group Phureja. Journal of Food Composition and Analysis, 66, 179-184. https://doi.org/10.1016/j.jfca.2017.12.019

Natividad Bardales, Á. D., Muñoz Garay, S. G., Villanueva Tiburcio, J. E., Rojas Portal, R. M., Chamorro Gómez, R. E., Cueto Rosales, C. R., Bravo Romaina, J. M., Beraun Bedoya, J. R., & Mendoza Aguilar, A. (2022). Caracterización fisicoquímica de cuatro variedades de papas nativas (Solanum tuberosum) con aptitud para fritura, cultivadas en dos zonas en Huánuco. Revista de la Sociedad Química del Perú, 88(3), 237-250. https://doi.org/10.37761/rsqp.v88i3.400

Navarre, D. A., Brown, C. R., & Sathuvalli, V. R. (2019). Potato Vitamins, Minerals and Phytonutrients from a Plant Biology Perspective. American Journal of Potato Research, 96(2), 111-126. https://doi.org/10.1007/s12230-018-09703-6

Oroian, M., & Escriche, I. (2015). Antioxidants: Characterization, natural sources, extraction and analysis. Food Research International, 74, 10-36. https://doi.org/10.1016/j.foodres.2015.04.018

Pertuzatti, P. B., Sganzerla, M., Jacques, A. C., Barcia, M. T., & Zambiazi, R. C. (2015). Carotenoids, tocopherols and ascorbic acid content in yellow passion fruit (Passiflora edulis) grown under different cultivation systems. LWT - Food Science and Technology, 64(1), 259-263. https://doi.org/10.1016/j.lwt.2015.05.031

Rapisarda, P., Fanella, F., & Maccarone, E. (2000). Reliability of analytical methods for determining anthocyanins in blood orange juices. Journal of Agricultural and Food Chemistry, 48(6), 2249-2252. https://doi.org/10.1021/jf991157h

Reddivari, L., Wang, T., Wu, B., & Li, S. (2019). Potato: An Anti-Inflammatory Food. American Journal of Potato Research, 96(2), 164-169. https://doi.org/10.1007/s12230-018-09699-z

Ren, J., Chen, Z., Duan, W., Song, X., Liu, T., Wang, J., Hou, X., & Li, Y. (2013). Comparison of ascorbic acid biosynthesis in different tissues of three non-heading Chinese cabbage cultivars. Plant Physiology and Biochemistry: PPB, 73, 229-236. https://doi.org/10.1016/j.plaphy.2013.10.005

Ru, W., Pang, Y., Gan, Y., Liu, Q., & Bao, J. (2019). Phenolic Compounds and Antioxidant Activities of Potato Cultivars with White, Yellow, Red and Purple Flesh. Antioxidants, 8(10), 419. https://doi.org/10.3390/antiox8100419

Saguy, I. S., & Dana, D. (2003). Integrated approach to deep fat frying: Engineering, nutrition, health and consumer aspects. Journal of Food Engineering, 56(2), 143-152. https://doi.org/10.1016/S0260-8774(02)00243-1

Scott, G. J., & Kleinwechter, U. (2017). Future Scenarios for Potato Demand, Supply and Trade in South America to 2030. Potato Research, 60(1), 23-45. https://doi.org/10.1007/s11540-017-9338-z

Senasa. (2017, junio 1). Andina - CIP: Perú promoverá 3,000 variedades de papa en congreso mundial en 2018. Senasa al día. https://www.senasa.gob.pe/senasacontigo/andina-cip-peru-promovera-3000-variedades-de-papa-en-congreso-mundial-en-2018/

Sheraz, M. A., Khan, M. F., Ahmed, S., Kazi, S. H., & Ahmad, I. (2015). Stability and Stabilization of Ascorbic Acid, A Review. H&PC Today - Household and Personal Care Today, 10(3), 22-25. https://www.teknoscienze.com/tks_article/stability-and-stabilization-of-ascorbic-acida-review/

Smirnoff, N. (2018). Ascorbic acid metabolism and functions: A comparison of plants and mammals. Free Radical Biology and Medicine, 122, 116-129. https://doi.org/10.1016/j.freeradbiomed.2018.03.033

Soriano Sancho, R. A., Pavan, V., & Pastore, G. M. (2015). Effect of in vitro digestion on bioactive compounds and antioxidant activity of common bean seed coats. Food Research International, 76, 74-78. https://doi.org/10.1016/j.foodres.2014.11.042

Spooner, D. M., McLean, K., Ramsay, G., Waugh, R., & Bryan, G. J. (2005). A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proceedings of the National Academy of Sciences, 102(41), 14694-14699. https://doi.org/10.1073/pnas.0507400102

Tagliazucchi, D., Verzelloni, E., Bertolini, D., & Conte, A. (2010). In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chemistry, 120(2), 599-606. https://doi.org/10.1016/j.foodchem.2009.10.030

Talley, E. A., Toma, R. B., & Orr, P. H. (1984). Amino acid composition of freshly harvested and stored potatoes. American Potato Journal, 61(5), 267-279. https://doi.org/10.1007/BF02854138

Tang, Y., Cai, W., & Xu, B. (2015). Profiles of phenolics, carotenoids and antioxidative capacities of thermal processed white, yellow, orange and purple sweet potatoes grown in Guilin, China. Food Science and Human Wellness, 4(3), 123-132. https://doi.org/10.1016/j.fshw.2015.07.003

Tatarowska, B., Milczarek, D., Wszelaczyńska, E., Pobereżny, J., Keutgen, N., Keutgen, A. J., & Flis, B. (2019). Carotenoids Variability of Potato Tubers in Relation to Genotype, Growing Location and Year. American Journal of Potato Research, 96(5), 493-504. https://doi.org/10.1007/s12230-019-09732-9

Tierno, R., Hornero-Méndez, D., Gallardo-Guerrero, L., López-Pardo, R., & de Galarreta, J. I. R. (2015). Effect of boiling on the total phenolic, anthocyanin and carotenoid concentrations of potato tubers from selected cultivars and introgressed breeding lines from native potato species. Journal of Food Composition and Analysis, 41, 58-65. https://doi.org/10.1016/j.jfca.2015.01.013

Villanueva-Tiburcio, J. E., Condezo-Hoyos, L. A., & Asquieri, E. R. (2010). Antocianinas, ácido ascórbico, polifenoles totales y actividad antioxidante, en la cáscara de camu-camu (Myrciaria dubia (H.B.K) McVaugh). Food Science and Technology, 30, 151-160. https://doi.org/10.1590/S0101-20612010000500023

Vinci, G., Botrè, F., Mele, G., & Ruggieri, G. (1995). Ascorbic acid in exotic fruits: A liquid chromatographic investigation. Food Chemistry, 53(2), 211-214. https://doi.org/10.1016/0308-8146(95)90791-5

Wang, J., Zhang, Z., & Huang, R. (2013). Regulation of ascorbic acid synthesis in plants. Plant Signaling & Behavior, 8(6), e24536. https://doi.org/10.4161/psb.24536

Wijesinha-Bettoni, R., & Mouillé, B. (2019). The Contribution of Potatoes to Global Food Security, Nutrition and Healthy Diets. American Journal of Potato Research, 96(2), 139-149. https://doi.org/10.1007/s12230-018-09697-1

Zampedri, C. A., Zampedri, P. A., Scattolaro, O., Zapata, L. M., & Castagnini, J. M. (2018). Evaluación de la digestión in vitro de compuestos bioactivos de arándanos. Ciencia, Docencia y Tecnología, 29(57), 285-295. https://doi.org/10.33255/2957/320

Zhou, L., Mu, T., Ma, M., Zhang, R., Sun, Q., & Xu, Y. (2019). Nutritional evaluation of different cultivars of potatoes (Solanum tuberosum L.) from China by grey relational analysis (GRA) and its application in potato steamed bread making. Journal of Integrative Agriculture, 18(1), 231-245. https://doi.org/10.1016/S2095-3119(18)62137-9

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

549 | 405




 

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.