Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio

Efecto de la temperatura de almacenamiento y el tipo de sustrato en la sobrevivencia de Lactobacillus acidophilus encapsulado

Universidad Laica Eloy Alfaro de Manabí
alginato UFC normalizadas tiempo de almacenamiento eficiencia de encapsulación glucosa suero de leche

Resumen

Las bacterias lácticas (BAL) son de amplio uso en fermentaciones de la industria alimenticia y en ensilajes para alimentación animal. Sin embargo, la supervivencia de los microorganismos en los alimentos y en ensilajes se ve afectada por factores ambientales como la temperatura. Por consiguiente, la exploración de tecnologías de encapsulación permitiría preservar la integridad de los microorganismos encapsulados al protegerlos de las condiciones adversas del entorno. En el presente trabajo se examinó el efecto de tres temperaturas de almacenamiento: ambiente (25 °C), refrigeración (4 °C) y congelación (-18 °C), en presencia de tres sustratos: glucosa, suero de leche o agua destilada en la supervivencia de Lactobacillus acidophilus encapsulado en alginato a través del conteo de las UFC. Los resultados mostraron que L. acidophilus encapsulado y almacenado a 4 °C presentó valores de UFC entre 0,61 y 0,99 durante 80 días, siendo estos los más altos, mientras que la temperatura ambiente presentó los menores números de UFC, con valores entre 0,312 y 0,93, siendo estos los más bajos entre las tres temperaturas analizadas. L. acidophilus encapsulado en presencia de suero de leche y glucosa mostró mayor número de UFC, con valores entre 0,53 y 1, a lo largo del tiempo de almacenamiento, en comparación con aquellos en presencia de agua destilada, cuyos valores estuvieron entre 0,3 y 0,99. La glucosa y el suero son los medios adecuados para el cultivo de L. acidophilus encapsulado a temperaturas ambiente, de refrigeración y de congelación durante 90 días de almacenamiento. Independiente del medio de cultivo, la temperatura de congelación es la adecuada para el almacenamiento de L. acidophilus durante largos períodos.

Santacruz Terán, S. G. . (2024). Efecto de la temperatura de almacenamiento y el tipo de sustrato en la sobrevivencia de Lactobacillus acidophilus encapsulado . Ciencia Y Tecnología Agropecuaria, 25(2). https://doi.org/10.21930/rcta.vol25_num2_art:3461

Altamirano-Ríos, A., Guadarrama-Lezama, A., Arroyo-Maya, I., Hernandez-Alvarez, A., & Orozco-Villafuerte, J. (2022). Effect of encapsulation methods and materials on the survival and viability of Lactobacillus acidophilus: A review. International Journal of Food Science and Technology, 57, 4027-4040. https://doi.org/10.1111/ijfs.15779

Arepally, D., Reddy, R., & Goswami, T. (2020). Encapsulation of Lactobacillus acidophilus NCDC 016 cells by spray drying: characterization, survival after in vitro digestion, and storage stability. Food & Function, 11, 8694-8706. https://doi.org/10.1039/D0FO01394C

Bodzen, A., Jossier, A., Dupont, S., Mousset, P., Beney, L., Lafay, S., & Gervais, P. (2021). Design of a new lyoprotectant increasing freeze-dried Lactobacillus strain survival to long-term storage. BMC Biotechnology, 21, 66. https://doi.org/10.1186/s12896-021-00726-2

Burns, P., Vinderola, G., Molinari, F., & Reinheimer, J. (2008). Suitability of whey and buttermilk for the growth and frozen storage of probiotic lactobacilli. International Journal of Dairy Technology, 61(2), 156-164. https://doi.org/10.1111/j.1471-0307.2008.00393.x

Caceres de Menezes, M., Silva, T., & Etchepare, M. (2019). Improvement of the viability of probiotics (Lactobacillus acidophilus) by multilayer encapsulation. Ciencia Rural, 49(9), e20181020. https://doi.org/10.1590/0103-8478cr20181020

Chew, S., Tan, C., Pui, L., Chong, P., Gunasekaran, B., & Lin, N. (2019). Encapsulation Technologies: A Tool for Functional Foods Development. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 8(5S), 154-160. https://www.ijitee.org/portfolio-item/es3410018319/

Colville, T., & Bassert, J. (2009). Clinical anatomy & physiology for veterinary technicians (3rd ed.). Elsevier.

Conrad, P., Miller, D., Cielenski, P., & Pablo, J. (2000). Stabilization and Preservation of Lactobacillus acidophilus in Saccharide Matrices. Cryobiology, 41(1), 17-24. https://doi.org/10.1006/cryo.2000.2260

De Melo, G., de Oliveira, B., Magalhães, A., Thomaz-Soccol, V., & Soccol, C. (2018). How to select a probiotic? A review and update of methods and criteria. Biotechnology Advances, 36(8), 2060-20. https://doi.org/10.1016/j.biotechadv.2018.09.003

Di Giacomo, G., Scimia, F., & Taglieri, L. (2017). Cost-effective disposal of milk whey II: recovery and purification of lactose and pure water from the diafiltration permeate stream. Desalination and Water Treatment, 76, 339-342. https://doi.org/10.5004/dwt.2017.20377

Gómez-Fernández, J., Gómez-Izquierdo, E., Tomás, C., Mocé, E., & de Mercado, E. (2012). Effect of different monosaccharides and disaccharides on boar sperm quality after cryopreservation. Animal Reproduction Science, 133(1-2), 109-116. https://doi.org/10.1016/j.anireprosci.2012.06.010

Homayouni, A., Azizi, A., Ehsani, M., Yarmand, M., & Razavi, S. (2008). Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of symbiotic ice cream. Food Chemistry, 111(1), 50–55. https://doi.org/10.1016/j.foodchem.2008.03.036

Islamova, Z., Ogai, D., Abramenko, I., Lim, A., Abduazimov, B., Malikova, M., Rakhmanberdyeva, R., Khushbaktova, Z., & Syrov, V. (2017). Comparative Assessment of the Prebiotic Activity of Some Pectin Polysaccharides. Pharmaceutical Chemistry Journal, 51, 288-291. https://doi.org/10.1007/s11094-017-1600-9

John, R., Tyagi, R., Brar, S., Surampalli, R., & Prévost, D. (2011). Bio-encapsulation of microbial cells for targeted agricultural delivery. Critical Reviews in Biotechnology, 31(3), 211-226. https://doi.org/10.3109/07388551.2010.513327

Kaur, M., Williams, M., Bissett, A., Ross, T., & Bowman, J. (2021). Effect of abattoir, livestock species and storage temperature on bacterial community dynamics and sensory properties of vacuum packaged red meat. Food Microbiology, 94, 103648. https://doi.org/10.1016/j.fm.2020.103648

Kozlowicz, K., Góral, M., Góral, D., Pankiewicz, U., & Bronowicka-Mielniczuk, U. (2019). Effect of ice cream storage on the physicochemical properties and survival of probiotic bacteria supplemented with zinc ions. LWT- Food Science and Technology, 116, 108562. https://doi.org/10.1016/j.lwt.2019.108562

Laličić-Petronijević, J., Popov-Raljić, J., Obradović, D., Radulović, Z., Paunović, D., Petrušić, M., & Pezo, L. (2015). Viability of probiotic strains Lactobacillus acidophilus NCFM® and Bifidobacterium lactis HN019 and their impact on sensory and rheological properties of milk and dark chocolates during storage for 180 days. Journal of Functional Foods, 15, 541-550. https://doi.org/10.1016/j.jff.2015.03.046

Maier, R., & Pepper, I. (2015). Bacterial growth. In R. Maier, I. Pepper, & P. Charles (Eds), Environmental Microbiology (Chapter 3, pp. 37-56). Academic Press. https://doi.org/10.1016/B978-0-12-394626-3.00003-X

Marques da Silva, T., Lopes, E., Franco, C., Cichoski, A., de Moraes, E., Motta, M., da Silva, C., Ferreira, C., & de Menezes, C. (2018). Development and characterization of microcapsules containing Bifidobacterium Bb-12 produced by complex coacervation followed by freeze drying. LWT - Food Science and Technology, 90, 412-417. https://doi.org/10.1016/j.lwt.2017.12.057

Masoumi, S., Mehrabani, D., Saberifiroozi, M., Fattahi, M., Moradi, F., & Najafi, M. (2021). The effect of yogurt fortified with Lactobacillus acidophilus and Bifidobacterium sp. probiotic in patients with lactose intolerance. Food Science & Nutrition, 9(3), 1704-1711. https://doi.org/10.1002/fsn3.2145

Matouskova, P., Hoova, J., Rysavka, P., & Marova, I. (2021). Stress Effect of Food Matrices on Viability of Probiotic Cells during Model Digestion. Microorganisms, 9(8), 1625. https://doi.org/10.3390/microorganisms9081625

Meryman, H. (2007). Cryopreservation of living cells: principles and practice. Transfusion, 47(5), 935-945. https://doi.org/10.1111/j.1537-2995.2007.01212.x

Midik, F., Tokatli, M., Elmaci, S., & Özçelik, F. (2020). Influence of different culture conditions on exopolysaccharide production by indigenous lactic acid bacteria isolated from pickles. Archives of Microbiology, 202, 875-885. https://doi.org/10.1007/s00203-019-01799-6

Motalebi, M., Rezazadeh, B., Alizadeh, K., Amiri, S., & Almasi, H. (2021). Microencapsulation of Lactobacillus acidophilus LA-5 and Bifidobacterium animalis BB-12 in pectin and sodium alginate: A comparative study on viability, stability, and structure. Food Science & Nutrition, 9(9), 5103-5111. https://doi.org/10.1002/fsn3.2470

Okoye, C., Wang, Y., Wu, Y., Li, X., Sun, J., & Jiang, J. (2023). The performance of lactic acid bacteria in silage production: A review of modern biotechnology for silage improvement. Microbiological Research, 266, 127212. https://doi.org/10.1016/j.micres.2022.127212

Pescuma, M., Hébert, H., Mozzi, F., & de Valdez, G. (2010). Functional fermented whey-based beverage using lactic acid bacteria. International Journal of Food Microbiology, 141(1-2), 73-81. https://doi.org/10.1016/j.ijfoodmicro.2010.04.011

Poletto, G., Fonseca, B., & Raddatz, G. (2019). Encapsulation of Lactobacillus acidophilus and different prebiotic agents by external ionic gelation followed by freeze-drying. Ciencia Rural, 49(2), 1-7. https://doi.org/10.1590/0103-8478cr20180729

Ranadheera, R., Baines, S., & Adams, M. (2010). Importance of food in probiotic efficacy. Food Research International, 43(1), 1-7. https://doi.org/10.1016/j.foodres.2009.09.009

Santacruz, S., & Castro, M. (2018). Viability of free and encapsulated Lactobacillus acidophilus incorporated to cassava starch edible films and its application to Manaba fresh white cheese. LWT Food Science and Technology, 93, 570-572. https://doi.org/10.1016/j.lwt.2018.04.016

Santivarangkna, C., Kulozik, U., & Foerst, P. (2011). Storing Lactic Acid Bacteria: Current Methodologies and Physiological Implications. In E. Tsakalidou & K. Papadimitriou (Eds.), Stress Responses of Lactic Acid Bacteria. Food Microbiology and Food Safety (pp. 479-504). Springer. https://doi.org/10.1007/978-0-387-92771-8_20

Shah, N., & Ravula, R. (2000). Microencapsulation of probiotic bacteria and their survival in frozen fermented dairy desserts. Australian Journal of Dairy Technology, 55, 139-144.

Sheu, T., & Marshall, R. (1993). Microencapsulation of Lactobacilli in calcium alginate gels. Journal of Food Science, 58(3), 557-561. https://doi.org/10.1111/j.1365-2621.1993.tb04323.x

Soukoulis, C., Behboudi-Jobbehdar, S., Yonekura, L., Parmenter, C., & Fisk, I. (2013). Impact of Milk Protein Type on the Viability and Storage Stability of Microencapsulated Lactobacillus acidophilus NCIMB 701748 Using Spray Drying. Food and Bioprocess Technology, 7, 1255-1268. https://doi.org/10.1007/s11947-013-1120-x

Vega, M. (2018). Bacterias del Ácido Láctico un Potencial para la Producción de Alimentos Probióticos Fermentados en la Industria Láctea de Panamá. KnE Engineering, 38-47. https://doi.org/10.18502/keg.v3i1.1411

Vemmer, M., & Patel, A. (2013). Review of encapsulation methods for microbial biological control agents. Biological Control, 67(3), 380-389. https://doi.org/10.1016/j.biocontrol.2013.09.003

Zhao, M., Qu, F., Phillips, G., & Jiang, F. (2015). Microencapsulation of Lactobacillus acidophilus: Correlation between bacteria survivability and physical properties of microcapsules. Food Biophysics, 10, 292-299. https://doi.org/10.1007/s11483-014-9389-5

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

609 | 216




 

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.