Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio

Evaluación de las propiedades proximales, estructurales, morfológicas fisicoquímicas y de digestibilidad in vitro en mezclas de harinas de ñame y batata

University of Sucre
University of Sucre
University of Sucre
University of Sucre
University of Córdoba
tubérculos tratamiento hidrotérmico almidón resistente solubilidad gelatinización


Yam (Dioscorea spp.) and sweet potato (Ipomeas batata) flours must be treated through modification processes because they have limitations in their physicochemical and structural properties for use in agri-food matrices. This study aimed to evaluate the effect of different proportions of flours on the proximate, structural, morphological, physicochemical, pasting, and in vitro digestibility properties of yam and sweet potato flour blends. Flours were obtained by drying the tubers with hot air at 55 °C, and mixtures were prepared at 25:75, 50:50, and 75:25 w/w sweet potato and yam flour proportions, respectively. The yam starch granules were spherical, oval, irregular, and larger than those of sweet potatoes, which are ovoid and flared. Furthermore, yam and sweet potato granules presented with type-B and type-A diffraction patterns, respectively, which, together with the starch content, amylose, non-starch components, and their molecular interactions, influenced the decrease in the molecular order and degree of crystallinity of the flour blends, without altering the morphological characteristics of the simple flours. Additive and non-additive effects were observed on flour blends’ swelling power and water absorption capacity. Likewise, breakdown and setback viscosity increased, which decreased thermal stability, increased the tendency to retrogradation, and elevated the fractions of rapidly digestible starch and resistant starch. These results suggest the high potential of flour blends in preparing baked products from the Caribbean Region, such as white bread, cookies, and cakes.

Seña-Rambauth, K. M. ., Hernández-Ruydíaz, J. E., Figueroa-Flórez, J. A., Salcedo-Mendoza, J. G., & Ortega-Quintana, F. A. (2024). Evaluación de las propiedades proximales, estructurales, morfológicas fisicoquímicas y de digestibilidad in vitro en mezclas de harinas de ñame y batata. Ciencia Y Tecnología Agropecuaria, 25(2).

Akhila, P. P., Sunooj, K. V., Revathi, G., Aaliya, B., Navaf, M., Sudheesh, C., Sabu, S., Sasidharan, A., Yadav, D. N., Mir, S. A., George, J., & Lackner, M. (2022). Incrementing effect on cold water solubility, structural and functional properties of alcohol-alkali treated Plectranthus rotundifolius starch by organic acids. Applied Food Research, 2(2), 100237.

Anderson, R. A., Conway, H. F., & Peplinski, A. J. (1970). Gelatinization of Corn Grits by Roll Cooking, Extrusion Cooking and Steaming. Starch ‐ Stärke, 22(4), 130-135.

Aprianita, A., Vasiljevic, T., Bannikova, A., & Kasapis, S. (2014). Physicochemical properties of wheat-canna and wheat-konjac composite flours. Journal of Food Science and Technology, 51(9), 1784-1794.

Araújo, A. L. de, & Pena, R. da S. (2020). Effect of particle size and temperature on the hygroscopic behaviour of cassava flour from dry group and storage time estimation. CyTA - Journal of Food, 18(1), 178-186.

Arazu, V., Nweze, J., Ozougwu, V., Nwanguma, B., & Eze, S. (2021). Studies on Different Concentrations of Alcohol-Alkaline and Acid-Alcohol Methods of Modification on some Functional Properties of Starch from Selected Underutilized Legumes. Tropical Journal of Natural Product Research, 5(1), 140-144.

Arroyo-Dagobeth, E. D., Figueroa-Flórez, J. A., Cadena-Chamorro, E., Salcedo Mendoza, J. G., & Cervera-Ricardo, M. A. (2023). Structural, physicochemical, and pasting properties of native cassava (Manihot esculenta) and yam (Dioscorea alata) starch blends. Agronomía Colombiana, 41(3), 1-12.

Association of Official Agricultural Chemists [AOAC]. (2005). Official Methods of Analysis. (18th Ed.).

Babu, A. S., Parimalavalli, R., Jagannadham, K., & Rao, J. S. (2015). Chemical and structural properties of sweet potato starch treated with organic and inorganic acid. Journal of Food Science and Technology, 52(9), 5745-5753.

Belkacemi, L. (2022). Blanching effect on physicochemical and functional properties of flours processed from peeled and unpeeled white‐fleshed sweet potato Algerian cultivar. Food Science and Technology, 42.

Chandra, S., Singh, S., & Kumari, D. (2015). Evaluation of functional properties of composite flours and sensorial attributes of composite flour biscuits. Journal of Food Science and Technology, 52(6).

Chen, L., Dai, Y., Hou, H., Wang, W., Ding, X., Zhang, H., Li, X., & Dong, H. (2021). Effect of high pressure microfluidization on the morphology, structure and rheology of sweet potato starch. Food Hydrocolloids, 115, 106606.

Chen, S. H., Li, X. F., Shih, P. T., & Pai, S. M. (2020). Preparation of thermally stable and digestive enzyme resistant flour directly from Japonica broken rice by combination of steam infusion, enzymatic debranching and heat moisture treatment. Food Hydrocolloids, 108, 106022.

Chen, X., Li, X., Mao, X., Huang, H., Wang, T., Qu, Z., Miao, J., & Gao, W. (2017a). Effects of drying processes on starch-related physicochemical properties, bioactive components and antioxidant properties of yam flours. Food Chemistry, 224, 224-232.

Chen, X., Lu, J., Li, X., Wang, Y., Miao, J., Mao, X., Zhao, C., & Gao, W. (2017b). Effect of blanching and drying temperatures on starch-related physicochemical properties, bioactive components and antioxidant activities of yam flours. LWT - Food Science and Technology, 82, 303-310.

De Oliveira, C. S., Bet, C. D., Bisinella, R. Z. B., Waiga, L. H., Colman, T. A. D., & Schnitzler, E. (2018). Heat-moisture treatment (HMT) on blends from potato starch (PS) and sweet potato starch (SPS). Journal of Thermal Analysis and Calorimetry, 133(3), 1491-1498.

Dereje, B., Girma, A., Mamo, D., & Chalchisa, T. (2020). Functional properties of sweet potato flour and its role in product development: a review. International Journal of Food Properties, 23(1), 1639-1662.

Eastman, J. E., & Moore, C. O. (1984). Cold water soluble granular starch for delled food compositions (Patent No. 4,465,702).

Edun, A. A., Olatunde, G. O., Shittu, T. A., & Adeogun, A. I. (2019). Flour, dough and bread properties of wheat flour substituted with orange-fleshed sweetpotato flour. Journal of Culinary Science and Technology, 17(3), 268-289.

Effah-Manu, L., Wireko-Manu, F. D., Agbenorhevi, J. K., Maziya-Dixon, B., & Oduro, I. (2022). Chemical, functional and pasting properties of starches and flours from new yam compared to local varieties. CyTA - Journal of Food, 20(1), 120-127.

Egbedike, C. N., Ozo, N. O., Ikegwu, O. J., Odo, M. O., & Okorie, P. A. (2016). Effect of Rice Bran Substitution on the Physicochemical Properties of Water Yam Flour. Asian Journal of Agriculture and Food Sciences, 04(05), 2321-1571.

Englyst, H. N., Kingman, S. M., & Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46 Suppl 2, S33-50.

Figueroa-Flórez, J. A., Arroyo Dagobeth, E. D., Cadena-Chamorro, E., Rodríguez-Sandoval, E., Salcedo-Mendoza, J. G., & Ciro-Velásquez, H. J. (2023). Effect of physical and thermal pretreatments on enzymatic activity in the production of microporous cassava starch. Agronomía Colombiana, 41(1), e105089.

Figueroa-Flórez, J. A., Cadena-Chamorro, E. M., Rodríguez-Sandoval, E., Salcedo-Mendoza, J., & Ciro-Velásquez, H. J. (2019). Cassava starches modified by enzymatic biocatalysis: Effect of reaction time and drying method. DYNA (Colombia), 86(208), 162-170.

Giri, N. A., Sakhale, B. K., & Krishnakumar, T. (2022). Nutrient composition, bioactive components, functional, thermal and pasting properties of sweet potato flour‐incorporated protein‐enriched and low glycemic composite flour. Journal of Food Processing and Preservation, 46(2).

Hasan, M. M., Alabdallah, N. M., Salih, A. M., Al-Shammari, A. S., ALZahrani, S. S., Al Lawati, A. H., Jahan, M. S., Rahman, M. A., & Fang, X.-W. (2023). Modification of starch content and its management strategies in plants in response to drought and salinity: current status and future prospects. Journal of Soil Science and Plant Nutrition, 23(1), 92-105.

Hasmadi, M., Harlina, L., Jau-Shya, L., Mansoor, A. H., Jahurul, M. H. A., & Zainol, M. K. (2020). Physicochemical and functional properties of cassava flour grown in different locations in sabah, malaysia. Food Research, 4(4), 991-999.

Hornung, P. S., Ávila, S., Lazzarotto, M., da Silveira Lazzarotto, S. R., de Andrade de Siqueira, G. L., Schnitzler, E., & Ribani, R. H. (2017). Enhancement of the functional properties of Dioscoreaceas native starches: Mixture as a green modification process. Thermochimica Acta, 649, 31-40.

Huang, T. T., Zhou, D. N., Jin, Z. Y., Xu, X. M., & Chen, H. Q. (2016). Effect of repeated heat-moisture treatments on digestibility, physicochemical and structural properties of sweet potato starch. Food Hydrocolloids, 54, 202-210.

Jan, N., Naik, H. R., Gani, G., Bashir, O., Amin, T., Wani, S. M., & Sofi, S. A. (2022). Influence of replacement of wheat flour by rice flour on rheo-structural changes, in vitro starch digestibility and consumer acceptability of low-gluten pretzels. Food Production, Processing and Nutrition, 4(1), 9.

Karigidi, K. O., & Olaiya, C. O. (2021). Improving the nutritional quality of yam flour by substitution with Curculigo pilosa and in vitro digestibility and sensory analysis of its pasta. Journal of Food Measurement and Characterization, 16(1), 29-37.

Kehinde, E., Ayodele, M., Sobukola, O., & Bakare, A. (2020). Nutrient composition, functional, physical and pasting properties of yellow yam (Dioscorea cayenensis) and jack bean (Canavalia ensiformis) flour blends. Carpathian Journal of Food Science and Technology, 12(5), 52-71.

Kumar, S. V., Sajeevkumar, V. A., & Kumar, S. (2018). The influence of bound water on the FTIR characteristics of starch and starch nanocrystals obtained from selected natural sources. Starch - Stärke, 71(5-6), 1700026.

Lawal, O. M., Sanni, O., Oluwamukomi, M., Fogliano, V., & Linnemann, A. R. (2021). The addition of fluted pumpkin (Telfairia occidentalis) leaf powder improves the techno-functional properties of cassava pasta. Food Structure, 30, 100241.

Li, L., Chen, J., Bai, D., Xu, M., Cao, W., Ren, G., Ren, A., & Duan, X. (2022). Physicochemical, Pasting Properties and In Vitro Starch Digestion of Chinese Yam Flours as Affected by Microwave Freeze-Drying. Foods, 11(15), 2324.

Li, L., Zhang, M., & Bhandari, B. (2019). Influence of drying methods on some physicochemical, functional and pasting properties of Chinese yam flour. Lwt, 111, 182-189.

Liang, W., Zhao, W., Liu, X., Zheng, J., Sun, Z., Ge, X., Shen, H., Ospankulova, G., Muratkhan, M., & Li, W. (2023). Investigating the role and mechanism of water in E-beam modified sweet potato starch: Multi-scale structure, physicochemical properties, and in vitro digestibility. Food Hydrocolloids, 137, 108433.

Liu, X., Lu, K., Yu, J., Copeland, L., Wang, S., & Wang, S. (2019). Effect of purple yam flour substitution for wheat flour on in vitro starch digestibility of wheat bread. Food Chemistry, 284, 118-124.

Lu, K., Liu, X., Yu, J., & Wang, S. (2022). Structure and Functional Properties of Purple Yam (Dioscorea alata L.) Starch from China. Starch - Stärke, 74(5-6), 2100310.

Ma, M., Liu, Y., Chen, X., Brennan, C., Xu, X., Sui, Z., & Corke, H. (2020). Thermal and pasting properties and digestibility of blends of potato and rice starches differing in amylose content. International Journal of Biological Macromolecules, 165, 321-332.

Mahajan, P., Bera, M. B., Panesar, P. S., & Dixit, H. (2022). Structural, functional, textural characterization and in vitro starch digestibility of underutilized Kutki millet (Panicum sumatrense) flour. Journal of Food Measurement and Characterization, 16(6), 4800-4812.

Marchini, M., Marti, A., Tuccio, M. G., Bocchi, E., & Carini, E. (2022). Technological functionality of composite flours from sorghum, tapioca and cowpea. International Journal of Food Science & Technology, 57(8), 4736-4743.

Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426-428.

Mustapha, N. A., Roslen, S. N. H., Abd Gafar, F. S., Wan Ibadullah, W. Z., & Sukri, R. (2019). Characterization of heat-moisture treated Dioscorea alata purpurea flour: impact of moisture level. Journal of Food Measurement and Characterization, 13(3), 1636-1644.

Nansereko, S., Muyonga, J., & Byaruhanga, Y. (2023). Production and Evaluation of an Instant Maize-Soy Flour Enriched With Refractance Window Dried Jackfruit (Artocarpus heterophyllus L.) Powder. International Journal of Food Studies, 12(1), 42-56.

Onyango, C., Luvitaa, S. K., Unbehend, G., & Haase, N. (2020). Nutrient composition, sensory attributes and starch digestibility of cassava porridge modified with hydrothermally-treated finger millet. Journal of Agriculture and Food Research, 2, 100021.

Oyeyinka, S. A., Akintayo, O. A., Adebo, O. A., Kayitesi, E., & Njobeh, P. B. (2021). A review on the physicochemical properties of starches modified by microwave alone and in combination with other methods. International Journal of Biological Macromolecules, 176, 87-95.

Pérez, E., Ciarfella, A., & Begoña Raymúndez, M. (2016). Identification by optical, electron microscopy and diffraction laser of the starch isolated from Ñame congo (Dioscorea bulbifera L.). Acta Microscopica, 25(1), 16-20.

Praseptiangga, D., Tryas, A. A., Affandi, D. R., Atmaka, W., Ariyantoro, A. R., & Minardi, S. (2018). Physical and chemical characterization of composite flour from canna flour (Canna edulis) and lima bean flour (Phaseolus lunatus). AIP Conference Proceedings, 1927, 030020.

Roy, D., & Kumar, K. J. (2023). Effect of pressure treatment duration on the rheological characteristics of dry-heated alocasia starch in the presence of monosaccharide and disaccharide. International Journal of Biological Macromolecules, 246, 125705.

Shao, Y., Mao, L., Guan, W., Wei, X., Yang, Y., Xu, F., Li, Y., & Jiang, Q. (2020). Physicochemical and structural properties of low-amylose Chinese yam (Dioscorea opposita Thunb.) starches. International Journal of Biological Macromolecules, 164, 427-433.

Singthong, J. (2018). Functional properties of purple yam (Dioscorea alata) flour. Suranaree Journal of Science and Technology, 25(2), 165-176.

Suriya, M., Baranwal, G., Bashir, M., Reddy, C. K., & Haripriya, S. (2016). Influence of blanching and drying methods on molecular structure and functional properties of elephant foot yam (Amorphophallus paeoniifolius) flour. LWT - Food Science and Technology, 68, 235-243.

Tortoe, C., Dowuona, S., Akonor, P. T., & Dziedzoave, N. T. (2017). Examining the physicochemical, functional and rheological properties in flours of farmers’ 7 key yam (Dioscorea spp.) varieties in Ghana to enhance yam production. Cogent Food and Agriculture, 3(1), 1-9.

Trela, V. D., Ramallo, A. L., & Albani, O. A. (2020). Synthesis and characterization of acetylated cassava starch with different degrees of substitution. Brazilian Archives of Biology and Technology, 63, 1-13.

Trung, P. T. B., Ngoc, L. B. B., Hoa, P. N., Tien, N. N. T., & Hung, P. Van. (2017). Impact of heat-moisture and annealing treatments on physicochemical properties and digestibility of starches from different colored sweet potato varieties. International Journal of Biological Macromolecules, 105, 1071-1078.

Ugwuona, F., Ukom, A., Ejinkeonye, B., Obeta, N., & Ojinnaka, M. (2021). Exploring the possibilities of some selected flour blends for the development of bakery products: Comparison with some physicochemical and functional properties of wheat flour. Food Science and Technology International, 29(2), 105-114.

Utami, R. F., Praseptiangga, D., Affandi, D. R., & Atmaka, W. (2018). Formulation and physicochemical characterization of composite flour from yam (Dioscorea alata) and lima beans (Phaseolus lunatus). AIP Conference Proceedings, 1927, 012041.

Villarroel, P., Gómez, C., Vera, C., & Torres, J. (2018). Almidón resistente: Características tecnológicas e intereses fisiológicos. Revista Chilena de Nutrición, 45(3), 271-278.

Wang, H., Yang, Q., Gao, L., Gong, X., Qu, Y., & Feng, B. (2020a). Functional and physicochemical properties of flours and starches from different tuber crops. International Journal of Biological Macromolecules, 148, 324-332.

Wang, X., Hu, A., Zheng, J., Li, L., Li, L., & Li, Y. (2020b). Physicochemical Properties and Structure of Annealed Sweet Potato Starch: Effects of Enzyme and Ultrasound. Starch/Staerke, 72(11-12), 1900247.

Waterschoot, J., Gomand, S. V., Fierens, E., & Delcour, J. A. (2015). Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches. Starch/Staerke, 67(1-2), 14-29.

Younge, S., Amoah, R. S., Abano, E. E., Kumi, F., & Anyebuno, G. (2022). Physico‐nutritional characterization of composite cassava and orange‐fleshed sweet potato flours and sensory evaluation of “fufu” prepared from the flour blends. Journal of Food Processing and Preservation, 46(12).

Yu, B., Li, J., Tao, H., Zhao, H., Liu, P., & Cui, B. (2021). Physicochemical properties and in vitro digestibility of hydrothermal treated Chinese yam (Dioscorea opposita Thunb.) starch and flour. International Journal of Biological Macromolecules, 176, 177-185.

Zhang, Z., Shang, M., Julian McClements, D., Qiu, C., Ji, N., Dai, L., Qin, Y., Xiong, L., & Sun, Q. (2023). Effects of annealing temperature and time on the structural and physicochemical properties of sweet potato flour hydrogels. Food Chemistry: X, 18, 100674.

Zou, J., Xu, M., Zou, Y., & Yang, B. (2021a). Physicochemical properties and microstructure of Chinese yam (Dioscorea opposita Thunb.) flour. Food Hydrocolloids, 113, 106448.

Zou, Y., Yuan, C., Cui, B., Liu, P., Wu, Z., & Zhao, H. (2021b). Formation of high amylose corn starch / konjac glucomannan composite film with improved mechanical and barrier properties. Carbohydrate Polymers, 251, 117039.


Los datos de descargas todavía no están disponibles.


99 | 42


Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.