Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio

Efecto del proceso de tostado en el contenido de polifenoles totales, actividad antioxidante y evaluación sensorial del café producido en Perú

Universidad Nacional Agraria de la Selva
Universidad Nacional Agraria de la Selva
Universidad Nacional Hermilio Valdizán
calidad de la taza Componentes principales principios activos

Resumen

El café es un alimento mundial que se comercializa con base en la calidad del grano, por sus características físicas y organolépticas. En Perú, en la región Huánuco, provincia de Leoncio Prado, se producen cafés de las variedades Typica y Bourbon, sin embargo, existe poca información sobre el efecto de los grados de tostado en la calidad de la taza y las propiedades antioxidantes. Los objetivos fueron evaluar el efecto de diferentes grados en el proceso de tostado de ambos cafés; evaluar el contenido de polifenoles totales, capacidad antioxidante (DPPH y ABTS+) y calidad del café en taza, mediante el método reportado por el Coffee Quality Institute. Las muestras de café verde oro también fueron sometidas a procesos de tostado claro, medio y oscuro, con un diseño estadístico factorial de 2ᶺ3, se realizó un análisis descriptivo cuantitativo (ADC) y un análisis de componentes principales (ACP). Los resultados mostraron que el tostado claro en cafés Typica y Bourbon ofrecieron un mayor contenido de polifenoles totales (4,13 ± 0,03 g AGE/100 g y 4,13 ± 0,01 g AGE/100 g) y actividad antioxidante frente al DPPH (IC50 155,66 ± 3,4 μg/ml y 170,41 ± 1,06 μg/ml, respectivamente) y ABTS+ (53,19 ± 0,16 μg/ml y 43,17 ± 0,57 μg/ml); la variedad Typica con tostado claro y la variedad Bourbon con tostados claro y medio ofrecieron las mejores características sensoriales. Los diferentes grados de tostado en el café provocaron cambios sensoriales y variaciones en el contenido de los principios activos, mientras que el grado de tostado claro ofreció una mayor cantidad de principios activos en el café que podrían ser aprovechados por los consumidores.

Huaccha-Herrera, C., Ordoñez-Gómez, E., & Villanueva-Tiburcio, J. E. (2024). Efecto del proceso de tostado en el contenido de polifenoles totales, actividad antioxidante y evaluación sensorial del café producido en Perú. Ciencia Y Tecnología Agropecuaria, 25(3). https://doi.org/10.21930/rcta.vol25_num3_art:3508

Abirami, R. G., & Kowsalya, S. (2017). Quantification and correlation study on derived phenols and antioxidant activity of seaweeds from gulf of mannar. Journal of Herbs, Spices & Medicinal Plants, 23(1), 9-17. https://doi.org/10.1080/10496475.2016.1240132

Abraham, A. M., Alnemari, R. M., Brüßler, J., & Keck, C. M. (2021). Improved antioxidant capacity of black tea waste utilizing plantcrystals. Molecules, 26(3), 592. https://doi.org/10.3390/molecules26030592

Adhikari, J., Chambers IV, E., & Koppel, K. (2019). Impact of consumption temperature on sensory properties of hot brewed coffee. Food Research International, 115, 95-104. https://doi.org/10.1016/j.foodres.2018.08.014

Ahmed, G. M., El-Ghamery, H. E., & Samy, M. F. (2013). Effect of green and degree of roasted arabic coffee on hyperlipidemia and antioxidant status in diabetic rats. Advance Journal of Food Science and Technology, 5(5). http://maxwellsci.com/jp/mspabstract.php?jid=AJFST&doi=ajfst.5.3137

Ashihara, H. (2006). Metabolism of alkaloids in coffee plants. Brazilian Journal of Plant Physiology, 18(1), 1-8. https://doi.org/10.1590/S1677-04202006000100001

Bacelar Leite, P., Fonseca Maciel, L. F., França Opretzka, L. C., Soares, S. E., & da Silva Bispo, E. (2013). Phenolic compounds, methylxanthines and antioxidant activity in cocoa mass and chocolates produced from «witch broom disease» resistant and non resistant cocoa cultivars. Ciência e Agrotecnologia, 37(3), 244-250. https://doi.org/10.1590/S1413-70542013000300007

Badmos, S., Fu, M., Granato, D., & Kuhnert, N. (2020). Classification of Brazilian roasted coffees from different geographical origins and farming practices based on chlorogenic acid profiles. Food Research International, 134, 109218. https://doi.org/10.1016/j.foodres.2020.109218

Bauer, D., Abreu, J., Jordão, N., Santos da Rosa, J., Freitas-Silva, O., & Teodoro, A. (2018). Effect of roasting levels and drying process of Coffea canephora on the quality of bioactive compounds and cytotoxicity. International Journal of Molecular Sciences, 19(11), 3407. https://doi.org/10.3390/ijms19113407

Bertrand, B., Boulanger, R., Dussert, S., Ribeyre, F., Berthiot, L., Descroix, F., & Joët, T. (2012). Climatic factors directly impact the volatile organic compound fingerprint in green Arabica coffee bean as well as coffee beverage quality. Food Chemistry, 135(4), 2575-2583. https://doi.org/10.1016/j.foodchem.2012.06.060

Borrelli, R. C., Visconti, A., Mennella, C., Anese, M., & Fogliano, V. (2002). Chemical characterization and antioxidant properties of coffee melanoidins. Journal of Agricultural and Food Chemistry, 50(22), 6527-6533. https://doi.org/10.1021/jf025686o

Bortholazzi Almeida, M., & de Toledo Benassi, M. (2011). Actividad antioxidante y estimación del contenido de melanoidina en cafés tostados comerciales. Semina: Ciências Agrárias, 32(4, supl. 1), 1893-1900. https://doi.org/10.5433/1679-0359.2011v32n4Sup1p1893

Budryn, G., Nebesny, E., Podsędek, A., Żyżelewicz, D., Materska, M., Jankowski, S., & Janda, B. (2009). Effect of different extraction methods on the recovery of chlorogenic acids, caffeine and Maillard reaction products in coffee beans. European Food Research and Technology, 228(6), 913-922. https://doi.org/10.1007/s00217-008-1004-x

Buenaventura-Serrano, C. E., & Castaño-Castrillón, J. J. (2002). Influencia de la altitud en la calidad de la bebida de muestras de café procedente del ecotopo 206b en Colombia. Cenicafé, 53(2), 119-131.

Caporaso, N., Whitworth, M. B., Cui, C., & Fisk, I. D. (2018). Variability of single bean coffee volatile compounds of Arabica and robusta roasted coffees analysed by SPME-GC-MS. Food Research International, 108, 628-640. https://doi.org/10.1016/j.foodres.2018.03.077

Cheng, B., Furtado, A., Smyth, H. E., & Henry, R. J. (2016). Influence of genotype and environment on coffee quality. Trends in Food Science & Technology, 57, 20-30. https://doi.org/10.1016/j.tifs.2016.09.003

Choi, S., Jung, S., & Ko, K. S. (2018). Effects of coffee extracts with different roasting degrees on antioxidant and anti-inflammatory systems in mice. Nutrients, 10(3), 363. https://doi.org/10.3390/nu10030363

Chu, Y. F., Brown, P. H., Lyle, B. J., Chen, Y., Black, R. M., Williams, C. E., Lin, Y. C., Hsu, C. W., & Cheng, I. H. (2009). Roasted coffees high in lipophilic antioxidants and chlorogenic acid lactones are more neuroprotective than green coffees. Journal of Agricultural and Food Chemistry, 57(20), 9801-9808. https://doi.org/10.1021/jf902095z

Coffee Quality Institute. (2022). Coffee Quality Institute (CQI) is a non-profit organization working internationally to improve the quality of coffee and the lives of people who produce it. https://www.coffeeinstitute.org/

Daglia, M., Papetti, A., Gregotti, C., Bertè, F., & Gazzani, G. (2000). In vitro antioxidant and ex vivo protective activities of green and roasted coffee. Journal of Agricultural and Food Chemistry, 48(5), 1449-1454. https://doi.org/10.1021/jf990510g

de Oliveira, G. S. (2006). Comparação química dos grãos de café (Coffea arabica), sadio e seus grãos PVA (pretos, verdes, ardidos) oriundos do Sul de Minas e do Cerrado Mineiro, submetidos a diferentes graus de torrefação [tesis de maestría, Universidade Federal de Uberlândia]. SBICafé, Biblioteca do Café. http://www.sbicafe.ufv.br/handle/123456789/161

del Pino García, R. (2011). Influencia del grado de tostado sobre la capacidad antioxidante y el efecto genoprotector del café soluble: contribución de la fracción de melanoidinas [tesis de máster en seguridad y biotecnología alimentarias, Universidad de Burgos]. Universidad de Burgos, repositorio institucional. http://riubu.ubu.es/handle/10259.1/128

Dong, W., Hu, R., Chu, Z., Zhao, J., & Tan, L. (2017). Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans. Food Chemistry, 234, 121-130. https://doi.org/10.1016/j.foodchem.2017.04.156

Duarte, G. S., Pereira, A. A., & Farah, A. (2010). Chlorogenic acids and other relevant compounds in Brazilian coffees processed by semi-dry and wet post-harvesting methods. Food Chemistry, 118(3), 851-855. https://doi.org/10.1016/j.foodchem.2009.05.042

Dybkowska, E., Sadowska, A., Rakowska, R., Dębowska, M., Świderski, F., & Świąder, K. (2017). Assessing polyphenols content and antioxidant activity in coffee beans according to origin and the degree of roasting. Roczniki Panstwowego Zakladu Higieny, 68(4), 347-353.

Farah, A., & Donangelo, C. M. (2006). Phenolic compounds in coffee. Brazilian Journal of Plant Physiology, 18(1), 23-36. https://doi.org/10.1590/S1677-04202006000100003

Ferrazzano, G. F., Amato, I., Ingenito, A., De Natale, A., & Pollio, A. (2009). Anti-cariogenic effects of polyphenols from plant stimulant beverages (cocoa, coffee, tea). Fitoterapia, 80(5), 255-262. https://doi.org/10.1016/j.fitote.2009.04.006

Fonseca-García, L., Calderón-Jaimes, L. S., & Rivera, M. E. (2014). Capacidad antioxidante y contenido de fenoles totales en café y subproductos del café producido y comercializado en norte de Santander (Colombia). Vitae, 21(3), 228-236.

Gamboa, R., Paola, Y., Mosquera, S., Silvio, A., Paz, N., & Iván, E. (2013). Caracterización de taza de café especial en el municipio de Chachagüí, departamento de Nariño, Colombia. Biotecnología en el Sector Agropecuario y Agroindustrial, 11(2), 85-92.

Gimase, J. M., Thagana, W. M., Kirubi, D. T., Gichuru, E. K., & Kathurima, C. W. (2014). Beverage quality and biochemical attributes of arabusta coffee (C. arabica L. x C. canephora Pierre) and their parental genotypes. African Journal of Food Science, 8(9), 456-464. https://doi.org/10.5897/AJFS2014.1132

Hečimović, I., Belščak-Cvitanović, A., Horžić, D., & Komes, D. (2011). Comparative study of polyphenols and caffeine in different coffee varieties affected by the degree of roasting. Food Chemistry, 129(3), 991-1000. https://doi.org/10.1016/j.foodchem.2011.05.059

Jang, H., Ahn, H. R., Jo, H., Kim, K. A., Lee, E. H., Lee, K. W., Jung, S. H., & Lee, C. Y. (2014). Chlorogenic acid and coffee prevent hypoxia-induced retinal degeneration. Journal of Agricultural and Food Chemistry, 62(1), 182-191. https://doi.org/10.1021/jf404285v

Jiménez Monreal, A. M., Sánchez Manzanera, M., & Martímez Tomé, M. (2012). Optimización del método captación del radical 2,2-difenil-1-picrilhidrazilo (DPPH) para evaluar actividad antioxidante en bebida de café. Anales de Veterinaria de Murcia, 28, 67-78. https://doi.org/10.6018/j/188731

Lee, J., Koo, N., & Min, D. B. (2004). Reactive oxygen species, aging, and antioxidative nutraceuticals. Comprehensive Reviews in Food Science and Food Safety, 3(1), 21-33. https://doi.org/10.1111/j.1541-4337.2004.tb00058.x

Lemos de Morais, S. A., Torres de Aquino, F. J., do Nascimento, E. A., Silva de Oliveira, G., Chang, R., dos Santos, N. C., & Marques Rosa, G. (2008). Análise de compostos bioativos, grupos ácidos e da atividade antioxidante do café arábica (Coffea arabica) do cerrado e de seus grãos defeituosos (PVA) submetidos a diferentes torras. Food Science and Technology, 28, 198-207. https://doi.org/10.1590/S0101-20612008000500031

Lima Filho, T., Lucia, S. M., Henriques Saraiva, S., & Leite, S. (2013). Qualidade sensorial e físico-química dos cafés arábica e conilon. Enciclopedia Biosfera, 9(16), 1887-1901.

Liu, C., Yang, N., Yang, Q., Ayed, C., Linforth, R., & Fisk, I. D. (2019). Enhancing Robusta coffee aroma by modifying flavour precursors in the green coffee bean. Food Chemistry, 281, 8-17. https://doi.org/10.1016/j.foodchem.2018.12.080

Londoño, J., Naranjo, M., & Quintero, M. M. (2013). Estudio de los cambios de la actividad antioxidante en bebidas de café durante su periodo de vida útil usando métodos in-vitro y ex-vivo. Vitae, 20(2). http://www.redalyc.org/resumen.oa?id=169829161002

Malaquias, J. V., Costa Celestino, S. M., & Manaira Ferreira, F. X. (2018). Optimization of the roasting conditions of arabica coffee cultivated in the cerrado area of Brazil. Brazilian Journal of Food Technology, 21, e201616. https://doi.org/10.1590/1981-6723.16216

Martins, S. C. V., Araújo, W. L., Tohge, T., Fernie, A. R., & DaMatta, F. M. (2014). In high-light-acclimated coffee plants the metabolic machinery is adjusted to avoid oxidative stress rather than to benefit from extra light enhancement in photosynthetic yield. Plos One, 9(4), e94862. https://doi.org/10.1371/journal.pone.0094862

Mestanza, M., Mori-Culqui, P. L., & Chavez, S. G. (2023). Changes of polyphenols and antioxidants of arabica coffee varieties during roasting. Frontiers in Nutrition, 10. https://doi.org/10.3389/fnut.2023.1078701

Moreira, A. S. P., Nunes, F. M., Domingues, M. R., & Coimbra, M. A. (2012). Coffee melanoidins: structures, mechanisms of formation and potential health impacts. Food & Function, 3(9), 903-915. https://doi.org/10.1039/C2FO30048F

Naranjo, M., Vélez, L. T., & Rojano, B. A. (2011). Antioxidant activity of different grades of Colombian coffee. Revista Cubana de Plantas Medicinales, 16(2), 164-173. https://www.medigraphic.com/cgi-bin/new/resumenI.cgi?IDARTICULO=36127

Nebesny, E., & Budryn, G. (2003). Antioxidative activity of green and roasted coffee beans as influenced by convection and microwave roasting methods and content of certain compounds. European Food Research and Technology, 217(2), 157-163. https://doi.org/10.1007/s00217-003-0705-4

Nebesny, E., & Budryn, G. (2006). Evaluation of sensory attributes of coffee brews from robusta coffee roasted under different conditions. European Food Research and Technology, 224(2), 159-165. https://doi.org/10.1007/s00217-006-0308-y

Nunes, F. M., Cruz, A. C. S., & Coimbra, M. A. (2012). Insight into the mechanism of coffee melanoidin formation using modified “in bean” models. Journal of Agricultural and Food Chemistry, 60(35), 8710-8719. https://doi.org/10.1021/jf301527e

Palombini, S. V., Maruyama, S. A., Claus, T., Carbonera, F., de Souza, N. E., Visentainer, J. V., Marques Gomes, S. T., & Matsushita, M. (2013). Evaluation of antioxidant potential of Brazilian rice cultivars. Food Science and Technology, 33(4), 699-704. https://doi.org/10.1590/S0101-20612013000400015

Parras, P., Martínez-Tomé, M., Jiménez, A. M., & Murcia, M. A. (2007). Antioxidant capacity of coffees of several origins brewed following three different procedures. Food Chemistry, 102(3), 582-592. https://doi.org/10.1016/j.foodchem.2006.05.037

Pérez-Hernández, L. M., Chávez-Quiroz, K., Medina-Juárez, L. A., & Gámez Meza, N. (2012). Phenolic Characterization, Melanoidins, and Antioxidant Activity of Some Commercial Coffees from Coffea arabica and Coffea canephora. Journal of the Mexican Chemical Society, 56(4), 430-435.

Perrone, D., Farah, A., & Donangelo, C. M. (2012). Influence of coffee roasting on the incorporation of phenolic compounds into melanoidins and their relationship with antioxidant activity of the brew. Journal of Agricultural and Food Chemistry, 60(17), 4265-4275. https://doi.org/10.1021/jf205388x

Priftis, A., Stagos, D., Konstantinopoulos, K., Tsitsimpikou, C., Spandidos, D. A., Tsatsakis, A. M., Tzatzarakis, M. N., & Kouretas, D. (2015). Comparison of antioxidant activity between green and roasted coffee beans using molecular methods. Molecular Medicine Reports, 12(5), 7293-7302. https://doi.org/10.3892/mmr.2015.4377

Prion, S., & Haerling, K. A. (2014). Making sense of methods and measurement: pearson product-moment correlation coefficient. Clinical Simulation in Nursing, 10(11), 587-588. https://doi.org/10.1016/j.ecns.2014.07.010

Puerta Quintero, G. I. (1998). Calidad de las variedades de Coffea arabica L. cultivadas en Colombia. Cenicafé, 49(4), 265-278.

Puth, M. T., Neuhäuser, M., & Ruxton, G. D. (2014). Effective use of Pearson’s product-moment correlation coefficient. Animal Behaviour, 93, 183-189. https://doi.org/10.1016/j.anbehav.2014.05.003

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9), 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3

Rebaya, A., Belghith, S. I., Cherif, J. K., & Trabelsi-Ayadi, M. (2016). Total phenolic compounds and antioxidant potential of rokrose (Cistus salviifolius) Leaves and Flowers Grown in Tunisia. International Journal of Pharmacognosy and Phytochemical Research, 8(2), 327-331.

Ribeiro, J. S., Augusto, F., Salva, T. J. G., & Ferreira, M. M. C. (2012). Prediction models for Arabica coffee beverage quality based on aroma analyses and chemometrics. Talanta, 101, 253-260. https://doi.org/10.1016/j.talanta.2012.09.022

Rodrigues, N. P., García Salva, T. J., & Bragagnolo, N. (2015). Influence of coffee genotype on bioactive compounds and the in vitro capacity to scavenge reactive oxygen and nitrogen species. Journal of Agricultural and Food Chemistry, 63(19), 4815-4826. https://doi.org/10.1021/acs.jafc.5b00530

Rodrigues de Oliveira, A. P. L., Corrêa, P. C., Reis, E. L., & de Oliveira, G. H. H. (2015). Comparative study of the physical and chemical characteristics of coffee and sensorial analysis by principal components. Food Analytical Methods, 8(5), 1303-1314. https://doi.org/10.1007/s12161-014-0007-4

Rodriguez, Y. F. B., Guzman, N. G., & Hernandez, J. G. (2020). Effect of the postharvest processing method on the biochemical composition and sensory analysis of Arabica coffee. Engenharia Agrícola, 40(2), 177-183. https://doi.org/10.1590/1809-4430-eng.agric.v40n2p177-183/2020

Sacchetti, G., Di Mattia, C., Pittia, P., & Mastrocola, D. (2009). Effect of roasting degree, equivalent thermal effect and coffee type on the radical scavenging activity of coffee brews and their phenolic fraction. Journal of Food Engineering, 90(1), 74-80. https://doi.org/10.1016/j.jfoodeng.2008.06.005

Sandoval, M., Okuhama, N. N., Angeles, F. M., Melchor, V. V., Condezo, L. A., Lao, J., & Miller, M. J. S. (2002). Antioxidant activity of the cruciferous vegetable Maca (Lepidium meyenii). Food Chemistry, 79(2), 207-213. https://doi.org/10.1016/S0308-8146(02)00133-4

Selvamuthu, D., & Das, D. (2018). Introduction to Statistical Methods, Design of Experiments and Statistical Quality Control. Springer Singapore. https://www.springer.com/gp/book/9789811317354

Society Coffee Association. (2019). Coffee Plants of the World. https://sca.coffee/research/coffee-plants-of-the-world

Sultana, B., Anwar, F., & Ashraf, M. (2009). Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules, 14(6), 2167-2180. https://doi.org/10.3390/molecules14062167

Tamilmani, P., & Pandey, M. C. (2015). Optimization and evaluation of phenolic compounds and their antioxidant activity from coffee beans. International Journal of Advanced Research, 3(4), 296-306.

Valadão Vicente, S. J., Queiroz, Y. S., Davidson Gotlieb, S. L., & Ferraz da Silva Torres, E. A. (2014). Stability of phenolic compounds and antioxidant capacity of regular and decaffeinated coffees. Brazilian Archives of Biology and Technology, 57(1), 110-118. https://doi.org/10.1590/S1516-89132014000100016

Valdiviezo Chamorro, R. (2023, febrero 8). Reporte de Exportaciones Diciembre 2022. Centro de Investigación de Economía y Negocios Globales. https://www.cien.adexperu.org.pe/reporte-de-exportaciones-diciembre-2022/

Vega, A., De León, J. A., & Reyes, S. M. (2017). Determinación del contenido de polifenoles totales, flavonoides y actividad antioxidante de 34 cafés comerciales de Panamá. Información Tecnológica, 28(4), 29-38. https://doi.org/10.4067/S0718-07642017000400005

Vignoli, J. A., Bassoli, D. G., & Benassi, M. T. (2011). Antioxidant activity, polyphenols, caffeine and melanoidins in soluble coffee: the influence of processing conditions and raw material. Food Chemistry, 124(3), 863-868. https://doi.org/10.1016/j.foodchem.2010.07.008

Vu, D. C., Vo, P. H., Coggeshall, M. V., & Lin, C. H. (2018). Identification and characterization of phenolic compounds in black walnut kernels. Journal of Agricultural and Food Chemistry, 66(17), 4503-4511. https://doi.org/10.1021/acs.jafc.8b01181

Wu, H., Lu, P., Liu, Z., Sharifi-Rad, J., & Suleria, H. A. R. (2022). Impact of roasting on the phenolic and volatile compounds in coffee beans. Food Science & Nutrition, 10(7), 2408-2425. https://doi.org/10.1002/fsn3.2849

Yashin, A., Yashin, Y., Wang, J. Y., & Nemzer, B. (2013). Antioxidant and Antiradical Activity of Coffee. Antioxidants, 2(4), 230-245. https://doi.org/10.3390/antiox2040230

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

961 | 531 | 1




 

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.