Ir al contenido principal Ir al menú de navegación principal Ir al pie de página del sitio

Apósitos a base de almidón: revisión sistemática sobre métodos de caracterización fisicoquímica y su potencial en la cicatrización de heridas

Pedagogical and Technological University of Colombia
Pedagogical and Technological University of Colombia
Pedagogical and Technological University of Colombia
almidón biopolimero apósito propiedades fisicoquímicas

Resumen

Los biopolímeros tienen un gran potencial en el campo del cuidado y la cicatrización de heridas. El almidón, como biopolímero abundante en la naturaleza, puede ser utilizado para reparar tejidos y mejorar su función natural, siempre y cuando cumpla con ciertas características específicas que se logran mediante la modificación de las propiedades fisicoquímicas del biomaterial. Por lo anterior, en este artículo se realiza una revisión sistemática del uso de biomateriales a base de almidón en el desarrollo de apósitos. Siguiendo las directrices de la metodología Prisma, se buscaron y analizaron artículos originales de los últimos siete años, donde se estudió la elaboración de biomateriales a base de almidón y su uso en la cicatrización de heridas. La selección de estos artículos incluyó criterios de inclusión y exclusión que permitieron elegir 57 estudios para cumplir con el objetivo de la revisión. Así, se describe detalladamente el tipo de apósito creado, las técnicas utilizadas para su obtención, los principales polímeros y aditivos empleados, así como los métodos de evaluación del biomaterial. Las técnicas de fabricación influyeron directamente en el tipo de apósito obtenido y las ventajas funcionales que adquirieron, donde sus modificaciones fisicoquímicas resultaron relevantes para que el biomaterial tuviera la capacidad de funcionar adecuadamente como apósito; además, los apósitos compuestos por diversos materiales y aditivos tienen mejor comportamiento mecánico que los elaborados a partir de un solo material. Se debe tener en cuenta que los métodos de caracterización permiten una evaluación precisa de los biomateriales, asegurando que estos proporcionen los beneficios esperados en la curación y el cuidado de heridas.

Bernal-Avila, F. J. ., Pardo Cuervo, O. H. ., & Segura Guerrero, N. A. (2024). Apósitos a base de almidón: revisión sistemática sobre métodos de caracterización fisicoquímica y su potencial en la cicatrización de heridas. Ciencia Y Tecnología Agropecuaria, 25(2). https://doi.org/10.21930/rcta.vol25_num2_art:3612

Adeli, H., Khorasani, M. T., & Parvazinia, M. (2019). Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: Fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay. International Journal of Biological Macromolecules, 122, 238-254. https://doi.org/10.1016/j.ijbiomac.2018.10.115

Ahmed, A., Khan Niazi, M. B., Jahan, Z., Ahmad, T., Hussain, A., Pervaiz, E., Janjua, H. A., & Hussain, Z. (2020). In-vitro and in-vivo study of superabsorbent PVA/Starch/g-C3N4/Ag@TiO2 NPs hydrogel membranes for wound dressing. European Polymer Journal, 130(109650), 109650. https://doi.org/10.1016/j.eurpolymj.2020.109650

Ahmed, A., Khan Niazi, M. B., Jahan, Z., Samin, G., Pervaiz, E., Hussain, A., & Mehran, M. T. (2020). Enhancing the thermal, mechanical and swelling properties of PVA/starch nanocomposite membranes incorporating g-C3N4. Journal of Polymers and the Environment, 28(1), 100-115. https://doi.org/10.1007/s10924-019-01592-y

Aktürk, A., Erol Taygun, M., Karbancıoğlu Güler, F., Goller, G., & Küçükbayrak, S. (2019). Fabrication of antibacterial polyvinylalcohol nanocomposite mats with soluble starch coated silver nanoparticles. Colloids and Surfaces. A: Physicochemical and Engineering Aspects, 562, 255-262. https://doi.org/10.1016/j.colsurfa.2018.11.034

Alborzi, Z., Izadi-Vasafi, H., & Ghayoumi, F. (2021). Wound dressings based on chitosan and gelatin containing starch, sesame oil and banana peel powder for the treatment of skin burn wounds. Journal of Polymer Research, 28(2). https://doi.org/10.1007/s10965-021-02427-y

Aliabadi, M., Shin Chee, B., Matos, M., Cortese, Y. J., Nugent, M. J. D., de Lima, T. A. M., Magalhães, W. L. E., & Goetten de Lima, G. (2020). Yerba mate extract in microfibrillated cellulose and corn starch films as a potential wound healing bandage. Polymers, 12(12), 2807. https://doi.org/10.3390/polym12122807

Altaf, F., Khan Niazi, M. B, Jahan, Z., Ahmad, T., Akram, M. A., Safdar, A., Shoaib Butt, M., Noor, T., & Sher, F. (2021). Synthesis and characterization of PVA/starch hydrogel membranes incorporating essential oils aimed to be used in wound dressing applications. Journal of Polymers and the Environment, 29(1), 156-174. https://doi.org/10.1007/s10924-020-01866-w

Ansarizadeh, M., Haddadi, S. A., Amini, M., Hasany, M., & Ramazani SaadatAbadi, A. (2020). Sustained release of CIP from TiO 2 ‐PVDF/starch nanocomposite mats with potential application in wound dressing. Journal of Applied Polymer Science, 137(30), 48916. https://doi.org/10.1002/app.48916

Baghaie, S., Khorasani, M. T., Zarrabi, A., & Moshtaghian, J. (2017). Wound healing properties of PVA/starch/chitosan hydrogel membranes with nano Zinc oxide as antibacterial wound dressing material. Journal of Biomaterials Science. Polymer Edition, 28(18), 2220-2241. https://doi.org/10.1080/09205063.2017.1390383

Batool, S., Hussain, Z., Khan Niazi, M. B., Liaqat, U., & Afzal, M. (2019). Biogenic synthesis of silver nanoparticles and evaluation of physical and antimicrobial properties of Ag/PVA/starch nanocomposites hydrogel membranes for wound dressing application. Journal of Drug Delivery Science and Technology, 52, 403-414. https://doi.org/10.1016/j.jddst.2019.05.016

Costa, N. N., de Faria Lopes, L., Freitas Ferreira, D., López de Prado, E. M., Severi, J. A., Alves Resende, J., de Paula Careta, F., Pimentel Ferreira, M. C., Gasparelli Carreira, L., Lamas de Souza, S. O., Pinto Cotrim, M. A., Boeing, T., Faloni de Andrade, S., Lambert Oréfice, R., & Oliveira Villanova, J. C. (2020). Polymeric films containing pomegranate peel extract based on PVA/starch/PAA blends for use as wound dressing: In vitro analysis and physicochemical evaluation. Materials Science & Engineering: C, 109, 110643. https://doi.org/10.1016/j.msec.2020.110643

da Silva, G. L. P., de Assunção Morais, L. C., Bonametti Olivato, J., Marini, J., & Colerato Ferrari, P. (2021). Antimicrobial dressing of silver sulfadiazine-loaded halloysite/cassava starch-based (bio)nanocomposites. Journal of Biomaterials Applications, 35(9), 1096-1108. https://doi.org/10.1177/0885328221995920

Das, A., Bhattacharyya, S., Uppaluri, R., & Das, C. (2020). Optimality of poly-vinyl alcohol/starch/glycerol/citric acid in wound dressing applicable composite films. International Journal of Biological Macromolecules, 155, 260-272. https://doi.org/10.1016/j.ijbiomac.2020.03.185

de Lima Lima, T. de P., & Fonseca Passos, M. (2021). Skin wounds, the healing process, and hydrogel-based wound dressings: a short review. Journal of Biomaterials Science. Polymer Edition, 32(14), 1910-1925. https://doi.org/10.1080/09205063.2021.1946461

Delavari, M. M., & Stiharu, I. (2022). Preparing and characterizing novel biodegradable starch/PVA-based films with nano-sized zinc-oxide particles for wound-dressing applications. Applied Sciences, 12(8), 4001. https://doi.org/10.3390/app12084001

Dodda, J. M., Ghafouri Azar, M., Bělský, P., Šlouf, M., Brož, A., Bačáková, L., Kadlec, J., & Remiš, T. (2022). Biocompatible hydrogels based on chitosan, cellulose/starch, PVA and PEDOT:PSS with high flexibility and high mechanical strength. Cellulose, 29(12), 6697-6717. https://doi.org/10.1007/s10570-022-04686-4

Elbassyoni, S., Kamoun, E. A., Taha, T. H., Rashed, M. A., & ElNozahi, F. A. (2020). Effect of Egyptian attapulgite clay on the properties of PVA-HES-clay nanocomposite hydrogel membranes for wound dressing applications. Arabian Journal for Science and Engineering, 45(6), 4737-4749. https://doi.org/10.1007/s13369-020-04501-x

El-Hefnawy, M. E., Alhayyani, S., El-Sherbiny, M. M., Sakran, M. I., & El-Newehy, M. H. (2022). Fabrication of nanofibers based on hydroxypropyl starch/polyurethane loaded with the biosynthesized silver nanoparticles for the treatment of pathogenic microbes in wounds. Polymers, 14(2), 318. https://doi.org/10.3390/polym14020318

Es-haghi, A., Mashreghi, M., Rezazade Bazaz, M., Homayouni-Tabrizi, M., & Darroudi, M. (2017). Fabrication of biopolymer based nanocomposite wound dressing: evaluation of wound healing properties and wound microbial load. IET Nanobiotechnology, 11(5), 517-522. https://doi.org/10.1049/iet-nbt.2016.0160

Eskandarinia, A., Kefayat, A., Rafienia, M., Agheb, M., Navid, S., & Ebrahimpour, K. (2019). Cornstarch-based wound dressing incorporated with hyaluronic acid and propolis: In vitro and in vivo studies. Carbohydrate Polymers, 216, 25-35. https://doi.org/10.1016/j.carbpol.2019.03.091

Faris Taufeq, F. Y., Habideen, N. H., Nagaswa Rao, L., Kumar Podder, P., & Katas, H. (2023). Potential hemostatic and wound healing effects of thermoresponsive wound dressing gel loaded with Lignosus rhinocerotis and Punica granatum extracts. Gels, 9(1), 48. https://doi.org/10.3390/gels9010048

Fernandes, M., Padrão, J., Ribeiro, A. I., Fernandes, R. D. V., Melro, L., Nicolau, T., Mehravani, B., Alves, C., Rodrigues, R., & Zille, A. (2022). Polysaccharides and metal nanoparticles for functional textiles: A review. Nanomaterials, 12(6), 1006. https://doi.org/10.3390/nano12061006

Goh, O. Q., Ganesan, G., Graves, N., Ng, Y. Z., Harding, K., & Tan, K. B. (2020). Incidence of chronic wounds in Singapore, a multiethnic Asian country, between 2000 and 2017: A retrospective cohort study using a nationwide claims database. BMJ Open, 10(9), e039411. https://doi.org/10.1136/bmjopen-2020-039411

Gong, F., Yang, N., Xu, J., Yang, X., Wei, K., Hou, L., Liu, B., Zhao, H., Liu, Z., & Cheng, L. (2023). Calcium hydride‐based dressing to promote wound healing. Advanced Healthcare Materials, 12(2). https://doi.org/10.1002/adhm.202201771

Hadisi, Z., Nourmohammadi, J., & Nassiri, S. M. (2018). The antibacterial and anti-inflammatory investigation of Lawsonia Inermis-gelatin-starch nano-fibrous dressing in burn wound. International Journal of Biological Macromolecules, 107, 2008-2019. https://doi.org/10.1016/j.ijbiomac.2017.10.061

Hassan, A., Khan Niazi, M. B., Hussain, A., Farrukh, S., & Ahmad, T. (2018). Development of anti-bacterial PVA/starch based hydrogel membrane for wound dressing. Journal of Polymers and the Environment, 26(1), 235-243. https://doi.org/10.1007/s10924-017-0944-2

Hasan Shahriari, M., Abdouss, M., & Hadjizadeh, A. (2023). Synthesis of dual physical self‐healing starch‐based hydrogels for repairing tissue defects. Polymer Engineering & Science, 63(3), 798-810. https://doi.org/10.1002/pen.26245

Hernández-González, V., Sans-Rosell, N., Jové-Deltell, M. C., & Reverter-Masia, J. (2016). Comparación entre Web of Science y Scopus, estudio bibliométrico de las revistas de anatomía y morfología. Revista Internacional de Morfología, 34(4), 1369-1377. https://doi.org/10.4067/s0717-95022016000400032

Hossein Azarian, M., Boochathum, P., & Kongsema, M. (2019). Biocompatibility and biodegradability of filler encapsulated chloroacetated natural rubber/polyvinyl alcohol nanofiber for wound dressing. Materials Science & Engineering: C, 103, 109829. https://doi.org/10.1016/j.msec.2019.109829

Hu, H., & Xu, F. J. (2020). Rational design and latest advances of polysaccharide-based hydrogels for wound healing. Biomaterials Science, 8(8), 2084-2101. https://doi.org/10.1039/d0bm00055h

Iqbal, H., Farrukh, S., Hussain, A., Hassan, A., & Hailegiorgis, S. M. (2019). Pursuance of Piper nigrum and Cinnamomum verum on poly vinyl alcohol-starch hydrogel membrane. Journal of the Chemical Society of Pakistan. Chemical Society of Pakistan, 41(3), 489. https://doi.org/10.52568/000761/jcsp/41.03.2019

Joorabloo, A., Khorasani, M. T., Adeli, H., Brouki Milan, P., & Amoupour, M. (2022). Using artificial neural network for design and development of PVA/chitosan/starch/heparinized nZnO hydrogels for enhanced wound healing. Journal of Industrial and Engineering Chemistry, 108, 88-100. https://doi.org/10.1016/j.jiec.2021.12.027

Jungprasertchai, N., Chuysinuan, P., Ekabutr, P., Niamlang, P., & Supaphol, P. (2022). Freeze-dried carboxymethyl chitosan/starch foam for use as a haemostatic wound dressing. Journal of Polymers and the Environment, 30(3), 1106-1117. https://doi.org/10.1007/s10924-021-02260-w

Komur, B., Bayrak, F., Ekren, N., Eroglu, M. S., Oktar, F. N., Sinirlioglu, Z. A., Yucel, S., Guler, O., & Gunduz, O. (2017). Starch/PCL composite nanofibers by co-axial electrospinning technique for biomedical applications. Biomedical Engineering Online, 16(1), 40. https://doi.org/10.1186/s12938-017-0334-y

Kuchaiyaphum, P., Chotichayapong, C., Butwong, N., & Bua-ngern, W. (2020). Silk fibroin/poly (vinyl alcohol) hydrogel cross-linked with dialdehyde starch for wound dressing applications. Macromolecular Research, 28(9), 844-850. https://doi.org/10.1007/s13233-020-8110-4

Kumaran, M. K. (1998). Interlaboratory comparison of the ASTM standard test methods for water vapor transmission of materials (E 96-95). Journal of Testing and Evaluation, 26(2), 83-88. https://doi.org/10.1520/jte11977j

Labelle, M. A., Ispas-Szabo, P., & Mateescu, M. A. (2020). Structure‐functions relationship of modified starches for pharmaceutical and biomedical applications. Die Starke, 72(7-8). https://doi.org/10.1002/star.202000002

Leon-Bejarano, M., Santos-Sauceda, I., Dórame-Miranda, R. F., Medina-Juárez, L. Á., Gámez-Meza, N., García-Galaz, A., Simsek, S., & Ovando-Martínez, M. (2023). Characterization of OSA starch-based films with nut-byproducts extracts for potential application as natural wound dressing. Polymer Bulletin, 80, 13199-13215. https://doi.org/10.1007/s00289-023-04707-7

Li, Q., Hu, E., Yu, K., Xie, R., Lu, F., Lu, B., Bao, R., Dai, F., & Lan, G. (2023). Gemini dressing with both super-hydrophilicity and -hydrophobicity pursuing isolation of blood cells for hemostasis and wound healing. Advanced Fiber Materials, 5(4), 1447-1466. https://doi.org/10.1007/s42765-023-00280-w

Long, L. Y., Hu, C., Liu, W., Wu, C., Lu, L., Yang, L., & Wang, Y. B. (2022). Microfibrillated cellulose-enhanced carboxymethyl chitosan/oxidized starch sponge for chronic diabetic wound repair. Biomaterials Advances, 135, 112669. https://doi.org/10.1016/j.msec.2022.112669

Lopes, P., Joaquinito, A. S. M., Ribeiro, A., Moura, N. M. M., Gomes, A. T. P., Guerreiro, S. G., Faustino, M. A. F., Almeida, A., Ferreira, P., Coimbra, M. A., Neves, M. G., & Gonçalves, I. (2023). Starch-based films doped with porphyrinoid photosensitizers for active skin wound healing. Carbohydrate Polymers, 313, 120894. https://doi.org/10.1016/j.carbpol.2023.120894

Luan, Z., Zhang, H., Hu, J., Zhang, J., & Liu, Y. (2021). Crosslinked carboxymethyl starch nanofiber mats: Preparation, water resistance and exudates control ability. European Polymer Journal, 154, 110568. https://doi.org/10.1016/j.eurpolymj.2021.110568

Malik, A., Rehman, F. U., Shah, K. U., Naz, S. S., & Qaisar, S. (2021). Hemostatic strategies for uncontrolled bleeding: A comprehensive update. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 109(10), 1465-1477. https://doi.org/10.1002/jbm.b.34806

Mao, Q., Hoffmann, O., Yu, K., Lu, F., Lan, G., Dai, F., Shang, S., & Xie, R. (2020). Self-contracting oxidized starch/gelatin hydrogel for noninvasive wound closure and wound healing. Materials & Design, 194, 108916. https://doi.org/10.1016/j.matdes.2020.108916

Mao, Y., Pan, M., Yang, H., Lin, X., & Yang, L. (2020). Injectable hydrogel wound dressing based on strontium ion cross-linked starch. Frontiers of Materials Science, 14(2), 232-241. https://doi.org/10.1007/s11706-020-0508-6

Medina, O. J., Pardo, O. H., & Ortiz M, C. A. (2012). Modified arracacha starch films characterization and its potential utilization as food packaging. Vitae, 19(2), 186-196. https://doi.org/10.17533/udea.vitae.10004

Meng, Q., Zhou, L., Zhong, S., Wang, J., Wang, J., Gao, Y., & Cui, X. (2023). Stimulus-responsive starch-based nanocapsules for targeted delivery and antibacterial applications. International Journal of Biological Macromolecules, 241, 124664. https://doi.org/10.1016/j.ijbiomac.2023.124664

Mistry, P., Chhabra, R., Muke, S., Narvekar, A., Sathaye, S., Jain, R., & Dandekar, P. (2021). Fabrication and characterization of starch-TPU based nanofibers for wound healing applications. Materials Science & Engineering: C, 119, 111316. https://doi.org/10.1016/j.msec.2020.111316

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097

Mojally, M., Sharmin, E., Obaid, N. A., Alhindi, Y., & Abdalla, A. N. (2022). Polyvinyl alcohol/corn starch/castor oil hydrogel films, loaded with silver nanoparticles biosynthesized in Mentha piperita leaves’ extract. Journal of King Saud University. Science, 34(4), 101879. https://doi.org/10.1016/j.jksus.2022.101879

Moradi, M., Barati, A., Moradi, S., & Zarinabadi, E. (2023). Synthesis and characterization of starch-based hydrogels containing myrtus oil nanoemulsion for wound dressings. Polymer Bulletin, 81, 3043-3062. https://doi.org/10.1007/s00289-023-04855-w

Movahedi, M., Asefnejad, A., Rafienia, M., & Khorasani, M. T. (2020). Potential of novel electrospun core-shell structured polyurethane/starch (hyaluronic acid) nanofibers for skin tissue engineering: In vitro and in vivo evaluation. International Journal of Biological Macromolecules, 146, 627-637. https://doi.org/10.1016/j.ijbiomac.2019.11.233

Naseri, E., Cartmell, C., Saab, M., Kerr, R. G., & Ahmadi, A. (2021). Development of N,O‐carboxymethyl chitosan‐starch biomaterial inks for 3D printed wound dressing applications. Macromolecular Bioscience, 21(12), 2100368. https://doi.org/10.1002/mabi.202100368

Neres Santos, A., Duarte Moreira, A. P., Piler Carvalho, C. W., Luchese, R., Ribeiro, E., McGuinness, G. B., Fernandes Mendes, M., & Nunes Oliveira, R. (2019). Physically cross-linked gels of PVA with natural polymers as matrices for manuka honey release in wound-care applications. Materials, 12(4), 559. https://doi.org/10.3390/ma12040559

Ng, J. Y., Yu, P., Murali, D. M., Liu, Y. S., Gokhale, R., & Ee, P. L. R. (2023). The influence of pregelatinized starch on the rheology of a gellan gum-collagen IPN hydrogel for 3D bioprinting. Chemical Engineering Research & Design, 192, 477-486. https://doi.org/10.1016/j.cherd.2023.02.042

Ounkaew, A., Kasemsiri, P., Jetsrisuparb, K., Uyama, H., Hsu, Y. I., Boonmars, T., Artchayasawat, A., Knijnenburg, J. T. N., & Chindaprasirt, P. (2020). Synthesis of nanocomposite hydrogel based carboxymethyl starch/polyvinyl alcohol/nanosilver for biomedical materials. Carbohydrate Polymers, 248, 116767. https://doi.org/10.1016/j.carbpol.2020.116767

Poonguzhali, R., Khaleel Basha, S., & Sugantha Kumari, V. (2018). Fabrication of asymmetric nanostarch reinforced Chitosan/PVP membrane and its evaluation as an antibacterial patch for in vivo wound healing application. International Journal of Biological Macromolecules, 114, 204-213. https://doi.org/10.1016/j.ijbiomac.2018.03.092

Punyanitya, S., Thiansem, S., Koonawoot, R., Sontichai, W., & Suchaitanawanit, S. (2020). Preparation and characterization of a new absorbent pad from rice starch. Materials science forum, 990, 91-95. https://doi.org/10.4028/www.scientific.net/msf.990.91

Rožanc, J., & Maver, U. (2023). Methods for analyzing the biological and biomedical properties of biomaterials. En Mohan, T., & Kleinschek, K. S. (Eds.), Functional biomaterials: Design and development for biotechnology, pharmacology, and biomedicine (pp. 165-197). Wiley. https://doi.org/10.1002/9783527827657

Ruksanti, A., Mahapram, B., Thiansem, S., Koonawoot, R., & Punyanitya, S. (2021). Preparation and some physical characterization of rice starch - carboxymethyl cellulose as hemostatic film. Materials Science Forum, 1042, 117-122. https://doi.org/10.4028/www.scientific.net/msf.1042.117

Sabando, C., Ide, W., Rodríguez-Díaz, M., Cabrera-Barjas, G., Castaño, J., Bouza, R., Müller, N., Gutiérrez, C., Barral, L., Rojas, J., Martínez, F., & Rodríguez-Llamazares, S. (2020). A novel hydrocolloid film based on pectin, starch and Gunnera tinctoria and Ugni molinae plant extracts for wound dressing applications. Current Topics in Medicinal Chemistry, 20(4), 280-292. https://doi.org/10.2174/1568026620666200124100631

Sahana, T. G., & Rekha, P. D. (2018). Biopolymers: Applications in wound healing and skin tissue engineering. Molecular Biology Reports, 45(6), 2857-2867. https://doi.org/10.1007/s11033-018-4296-3

Salehi, H., Mehrasa, M., Nasri-Nasrabadi, B., Doostmohammadi, M., Seyedebrahimi, R., Davari, N., Rafienia, M., Hosseinabadi, M., Agheb, M., & Siavash, M., (2017). Effects of nanozeolite/starch thermoplastic hydrogels on wound healing. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 22(1), 110. https://doi.org/10.4103/jrms.jrms_1037_16

Selvaraj, D., Viswanadha Vijaya, P., & Elango, S. (2015). Wound dressings - a review. Biomedicine, 5(4), 22. https://doi.org/10.7603/s40681-015-0022-9

Sethi, S., Saruchi, Medha, Thakur, S., Kaith, B. S., Sharma, N., Ansar, S., Pandey, S., & Kuma, V. (2022). Biopolymer starch-gelatin embedded with silver nanoparticle-based hydrogel composites for antibacterial application. Biomass Conversion and Biorefinery, 12(11), 5363-5384. https://doi.org/10.1007/s13399-022-02437-w

Su, C., Zhao, H., Yang, H., & Chen, R. (2019). Stearic acid-modified starch/chitosan composite sponge with asymmetric and gradient wettability for wound dressing. ACS Applied Bio Materials, 2(1), 171-181. https://doi.org/10.1021/acsabm.8b00508

Tavakoli, J. (2017). Physico-mechanical, morphological and biomedical properties of a novel natural wound dressing material. Journal of the Mechanical Behavior of Biomedical Materials, 65, 373-382. https://doi.org/10.1016/j.jmbbm.2016.09.008

Torres, F. G., Commeaux, S., & Troncoso, O. P. (2013). Starch‐based biomaterials for wound‐dressing applications. Die Starke, 65(7-8), 543-551. https://doi.org/10.1002/star.201200259

Wu, W. C., Hsiao, P. Y., & Huang, Y. C. (2019). Effects of amylose content on starch-chitosan composite film and its application as a wound dressing. Journal of Polymer Research, 26, 137. https://doi.org/10.1007/s10965-019-1770-0

Xu, R., Xia, H., He, W., Li, Z., Zhao, J., Liu, B., Wang, Y., Lei, Q., Kong, Y., Bai, Y., Yao, Z., Yan, R., Li, H., Zhan, R., Yang, S., Luo, G., & Wu, J. (2016). Controlled water vapor transmission rate promotes wound-healing via wound re-epithelialization and contraction enhancement. Scientific Reports, 6(1), 24596. https://doi.org/10.1038/srep24596

Yang, X., Liu, W., Shi, Y., Xi, G., Wang, M., Liang, B., Feng, Y., Ren, X., & Shi, C. (2019). Peptide-immobilized starch/PEG sponge with rapid shape recovery and dual-function for both uncontrolled and noncompressible hemorrhage. Acta Biomaterialia, 99, 220-235. https://doi.org/10.1016/j.actbio.2019.08.039

Yeniay, E., Öcal, L., Altun, E., Giray, B., Nuzhet Oktar, F., Talat Inan, A., Ekren, N., Kilic, O., & Gunduz, O. (2018). Nanofibrous wound dressing material by electrospinning method. International Journal of Polymeric Materials and Polymeric Biomaterials, 68(1-3), 11-18. https://doi.org/10.1080/00914037.2018.1525718

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

588 | 263




 

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.